
ubiPCMM 2005

111

Abstract—Context-Awareness is a key concept of future

ubiquitous computing. Although various academic and industry
researches are going on around the world to realize context-
awareness, we are yet to achieve any substantial success. In this
paper we have reported our experiences of dealing with context
awareness. We have presented our approach for building
context-aware applications by demonstrating a real life
application development process. Furthermore we have
presented two context-aware application frameworks that we
have deployed in the roadmap of our research towards context-
awareness. We have discussed our findings and learned lessons
on various issues of context-awareness.

Index Terms— Context-Awareness, Middlewares, Sentient
Artefacts, Smart Environment.

I. INTRODUCTION

BIQUITOUS computing envisions a future environment
that will be aware of its operating context and that will be

adaptive to ease our interaction [1][3][9][24]. We approach
such an environment by the environment itself. That means
taking the building blocks of the environment and making
them smart and context aware by capturing people’s implicit
interaction. We have been developing such building blocks,
specifically everyday life objects by augmenting various kinds
of sensors. We call them sentient artefacts. Our vision is to
utilize these objects for value added services in addition to
their primary roles. For example, consider a frying pan, its
primary use is in the kitchen. However we can utilize the
frying pan by augmenting it with some sensors/tags to infer
that its owner is in the kitchen or he/she is cooking while the
frying pan is being used. Usually these artefacts differ from
the explicit sensors in three ways:

1) Sentient artefacts require a small operating
software/device driver that captures values from multiple
sensors embedded in the artefacts and process these values in
a logical way to provide information about its state of use,
properties or anything the software/driver author wants to
provide.

Manuscript submitted June 17, 2005.
Fahim Kawsar is a MS student in Computer Science Department at

Waseda University, Japan (e-mail: fahim@ dcl.info.waseda.ac.jp).
Kaori Fujinami is an Assistant Professor of Computer Science Department

at Waseda University, Japan (e-mail: fujinami@dcl.info.waseda.ac.jp).
Tatsuo Nakajima is a Professor of Computer Science Department at

Waseda University. (e-mail: tatsuo@dcl.info.waseda.ac.jp).

2) Rather than providing an analog/digital sensor value,
sentient artefacts provide a “statement” to the interested
applications, for example a sentient chair may provide a
statement like “The chair is being used by Rob”.

3) Finally, sentient artefacts can also be actuators in some
cases.

Some services like scheduler or weather forecast monitor
etc. are also considered as virtual sentient artefacts. By
augmenting sensors, we make these belongings (micro
component of the environment) smart. Eventually this process
recursively makes our environment smart and context aware in
a bottom up approach. For context aware services we need to
handle this environment by modeling them in multiple
applications. These applications typically use various
components of the environment. In our approach, these
components are the sentient artefacts.

In this paper we have reported our experience on
developing the context aware applications using these
artefacts. We have specified the approach centered on the
sentient artefacts that we have taken and the problems that we
have faced during development process. For the ease of
development we have written two context aware application
frameworks from different points of view. These two
middlewares’ goal is to provide a seamless platform for
application development automating many recurring tasks.
However we could not achieve a substantial degree of success.
In the paper we have reported the probable causes that limit
our performance. For clearly demonstrating our approach, we
have selected a context aware application and have shown the
development process of that application. We have developed
two versions of this application utilizing the two frameworks
to identify the pros and cons of the frameworks. Rather than
specifying the ideal requirements, we will focus mainly on
sharing our experience of application development in the
paper.

The remaining paper is organized as follows: In Section II
we have specified the steps that we have followed for
application development. Section III demonstrates our
approach by presenting a hypothetical scenario followed by
the capability requirements for the scenario functionalities and
the implementation of the scenario. In Section IV we have
presented two middlewares and their integration with the
application. Section V discusses the problems and our

Experiences with Developing Context-Aware
Applications with Augmented Artefacts

Fahim Kawsar, Kaori Fujinami, Tatsuo Nakajima

U

Fahim Kawsar, Kaori Fujinami, Tatsuo Nakajima 112

experiences. In Section VI we have cited the related works,
finally Section VII concludes the paper.

II. OUR APPROACH

In our lab we are constantly drawing real life practical
scenarios. We use these scenarios as the design base for
deploying the environment components with augmented
sensors and for developing integrated applications to
implement those scenarios. We believe capturing users’
context implicitly by their natural interaction with the
environment is a key issue for context awareness. Here natural
interaction means interacting with natural interfaces like
everyday objects. A natural interface activates the cognitive
and cybernetic dynamics that people commonly experience in
real life, thus persuading them that they are not dealing with
abstract, digital media but with physical real objects. This
results in a reduction of the cognitive load, thus increasing the
amount of attention on content [28]. So our approach is to
make the artefact aware but not to make the user aware of this
fact by keeping the artefact’s primary role and interaction
technique intact. Users only use daily life objects in the way
they are used to. However our infrastructure captures these
natural interactions in order to generate user’s context.

From our experience of development, we have identified the
essential steps that we followed for building context aware
applications. These are:

 1) Fixing the goal and the target location of the application,
that is where and what services to perform, where and what
information to provide etc. It means drawing the application
scenario.

2) Identifying the context information that is required for
achieving the goal or implementing the scenario.

3) Identifying the source of the context information that is
how to extract the context information from the target
environment. This step can be further sub-divided to answer
the following questions:

a) What context sources are available in the
environment that can provide the required context?

b) How these sources are acquiring context? If sensors
are used then how to model the context from the raw
sensor data?

c) Who is responsible for modeling the context, the
application or the context source?

 4) Identifying the suitable interaction technique for the end
users and providing a suitable way for reflecting end users’
preference.

These steps are not mutually exclusive and may overlap each
other. The success of the application depends on satisfying
them with the highest degree of precision. However from our
experience we have found that it is very difficult to satisfy
these steps. There are many issues that contribute to this
complexity thus limiting the success of context-aware
applications. In fact we cannot pick a single problem for

solving the complexity. We will discuss in detail about this
complexity in the discussion section.

III. SAMPLE APPLICATION

The first step that we follow is to identify an application
scenario. In this section we have presented a scenario, then we
have demonstrated how we have implemented the scenario.

A. Another Morning for Binti

Binti is a broker at the New York Stock Exchange. During
her daily morning routine in the bathroom, while she is
brushing her teeth and putting on her make-up, her mirror
provides all the information she needs to start her day. During
these activities she can watch her daily schedule. Besides that
she also sees what the weather will be like, so she can dress
fittingly. Furthermore she finds out if the subway, which she
usually takes from her house to the Stock Exchange, is
running properly. The subway is often delayed or closed for
maintenance, in which case the mirror shows her an
alternative route making sure that she does not have to rush to
be on time for the morning breakfast meeting with her team.

 B. Scenario Implementation: What To Sense and How

Once we have drawn the application scenario, then we have
to identify the context information and the capability
requirements of the artefacts that we can use to extract the
required contexts. This scenario requires a smart mirror to be
installed in the washroom that can capture users context
(specifically detecting user’s identity and user’s presence at
mirror’s location) and can present him/her with some useful
information. We have deployed an application AwareMirror
for the functionalities. In the following table we have
summarized what is required to be sensed for the proper
functionalities of the application and what sentient artifacts we
have used to capture them:

Table I
Functionality mapping from requirements to sentient artefacts

 Scenario

Functionality
Required
Capability

Augmented
Artefact

Used
Detecting user’s
presence and
position.

Mirror augmented
with proximity
sensors

Identifying user

Toothbrush as an
authenticator of
the user

Extracting
schedule,
weather and
transport
information

Web service
treated as virtual
sentient artefact

W
A
S
H
R
O
O
M

Display weather,
schedule, and
transportation
information related
to the user on the
mirror

Displaying
extracted
information

Mirror augmented
with acrylic
magic mirror
board

ubiPCMM 2005

113

AwareMirror [16] is a smart mirror installed in the
washroom as shown in Figure 1. In addition to its primary task
of reflecting someone’s image, it can also provide some useful
information related to the person who is using the mirror. It
uses two sentient artefacts: a mirror and a toothbrush. It also
uses three web services to collect information about the users’
schedule, transportation information and weather forecasting.
When a toothbrush is used, its user is identified and the useful
information related to the user is extracted from various web
services and is shown on the mirror.

Fig. 1. AwareMirror in Operation, the mirror displaying weather,
transportation and schedule information in abstract mode.

 C. Component View

The following sentient artefacts and sensors have been used
in the AwareMirror application:

 1) AwareMirror: The mirror is constructed using an acrylic
magic mirror board and an ordinary computer monitor. The
acrylic board is attached in front of the monitor and only
bright colors from the display can penetrate the board. Two
proximity sensors have been embedded into the mirrors. These
are used to infer users’ distance/position from the mirror.
Furthermore a slide sensor is fabricated on the mirror that is
used to navigate between the abstract and detail mode of the
displayed information.
 2) Toothbrush: A Toothbrush is augmented with a two-axis
accelerometer. It can detect start and end of brushing. This is
achieved by monitoring zero crossing through the
differentiation between two latest measurements, i.e. from
plus to minus and vice versa. In addition an RFID tag is
fabricated into it, which can be used to detect the toothbrush in
a specific location. As a toothbrush is a highly personal
belonging, which is rarely shared with others, we can infer
that only its owner will use it. This fact we have utilized to
infer the identification of a person (the owner) by the
toothbrush’s state of usage and location.
 3) Web Services: For three categories of information we
have used 3 distinct web services. Yahoo Japan has been used
for the weather forecasting. iCalendar based scheduler service

is used for tracking the user’s schedule. We have used a
dummy web service for the transportation information.

 D. Functional View

 The application’s control flow can be stated as follows:

 1) During the system initialization, all the components are
enumerated accordingly.
 2) The user initializes the system by providing necessary
information.
 3) If the user uses the toothbrush in the morning, while the
system is running, the user is identified by the system and
his/her preference information is loaded.
 4) Accordingly the web services are contacted to collect the
information.
 5) The system then renders the information to the Mirror.
 6) The display has two modes, initially the mirror displays
very abstract information in appropriate positions within the
mirror, making sure that information does not cover the main
portion of the mirror.
 7) The slider can be used to change the mode of the display.
By using the slider fabricated in the mirror, the user can
navigate to the detail mode that shows detailed information. In
this case the mirror actually turns into a mere display.
 In the next section, we have discussed how these
functionalities are achieved by utilizing the two different
frameworks.

IV. UNDERLYING INFRASTRUCTURE

It is obvious that we indeed need a stable platform that
makes the application development simple and rapid by
automating many recurring tasks. We have developed two
infrastructures for providing the platform support to context-
aware application developers. These two frameworks attack
the problem in different manners. The first one “Bazaar” is a
centralized architecture that attempts to model the
environment in a bottom up approach exploiting self-
descriptive objects, central repository and an inherent location
model. Bazaar is more motivated to provide a suitable world
model than providing support for contextual application.
However it is flexible enough to provide support for handling
contextual information. The second one “Prottoy” is a
distributed one in approach that attempts to model the
environment in a top down manner and primarily focuses on
providing generic access to the environment for the
developers. Prottoy is completely dedicated to provide a
seamless platform for context-aware applications.

We have implemented two versions of AwareMirror
applications using these two frameworks. However before
giving our experience reports on the development, let us
introduce the two architectures briefly and their integration
with AwareMirror.

Fahim Kawsar, Kaori Fujinami, Tatsuo Nakajima 114

A. Bazaar

Bazaar [17][18] is an infrastructure for modeling the
physical world populated with various sentient artefacts. It
provides an application developer with a shared physical space
information repository and with high level APIs to access
information and notification of interesting events. The details
of communication between the application space and the
physical space are hidden in Bazaar.

Currently, Bazaar manages and provides the following

types of information: 1) type, 2) location, 3) state-of-use, 4)
owner, 5) timestamp of detection, and 6) IP address/port
number and additional information to control a sentient
artefact. Since Bazaar manages these kinds of information as a
key-value pair, a new one can be easily added.

As can be seen in Figure 2 Bazaar consists of five major
parts. This includes, 1) an identifiable artefact that serves as a
source of low level contextual information and an actuator if
any, 2) an ID detector that provides the approximate location
of a detected artefact within its sensing range, 3) a shared
information repository, 4) a contextual extraction framework
that interprets and makes the low level contextual information
available to the application as highly abstract information, and
5) an application logic that a developer has to implement.
Every artefact is identified using a tag like RFID, where its
related information and the location of the detector are linked
together. Application can receive artefact specific information
specified earlier by querying the shared repository.

Fig. 2. The architecture of Bazaar, demonstrating major components

B. Implementation of AwareMirror using Bazaar

 Figure 3 shows the overall architecture of Aware Mirror on
top of Bazaar. AwareMirror, sentient toothbrush and an
application “AwareMirror Controller” are the components that
are glued with Bazaar. On top of Bazaar, an integrated

application exists which aggregates information from the two
artefacts and makes this information available to the
AwareMirror Controller. Upon receiving appropriate context
information, this controller communicates with the web
services to extract proper information related to the user and
present them on the mirror.

Fig. 3. Implementation of AwareMirror using Bazaar

So, here Bazaar acts as the physical space manager, it has the
snapshot (location, state of use, properties etc) of the self-
descriptive artefacts (AwareMirror, Toothbrush) available in
the environment. The artefacts are identified by the ID
detector component of Bazaar and accordingly their state of
use and property information is aggregated in the central
repository. The consumer application AwareMirror controller
exploits this information accordingly to render the output on
the mirror.

 C. Prottoy

 Prottoy [7][8] provides a generic interface to the
applications for interacting with sentient artefacts in a unified
way regardless of their type and properties Prottoy is
composed of few core components and few pluggable
components as shown in Figure 4.

Fig. 4. The architecture of Prottoy, demonstrating major components

ubiPCMM 2005

115

 Core Framework Components:

 1) Resource Manager: As the name implies, it simply
registers the properties, services and context information of
the artefacts. When application query comes via virtual
artefacts it responses accordingly

 2) Artefact Wrapper: It encapsulates the sentient artefacts,
sensors, actuators or virtual sensors like weather services,
scheduler etc. We have provided a template for the developers
to wrap their device drivers or software into this component.
Developers provide the artefact property and location
information into this template during deployment. Artefact
wrapper has its own resource manager that can advertise its
capabilities when the global resource manager is absent. In
addition it has a simple security measure using IP filtering,
that allows an artefact to control access to its service and
protect information from malicious applications.

 3) Virtual Artefact: It abstracts the smart environments and
provides a unified view. Application constructs virtual artefact
instances from specific context or service requirement. Virtual
artefact communicates with the resource manager and if an
artefact is found virtual artefact communicates with that
artefact. If everything goes fine virtual artefact represents the
artefact in the application. Application can subscribe to this
artefact or can poll for contextual information. Application can
also execute services of the physical artefact. If storage is
enabled, virtual artefact creates storage in the application
layer. If proxy is enabled then the proxy service of virtual
artefact activates when the physical artefact is absent. The
proxy provides the application with a calculated low accurate
context value using the storage.

 Components Pluggable to Application:

 1) Interpreter: It maps the context value to the interpreted
value. We argue that context interpretation is highly
application dependent as the same context can be interpreted
in different ways based on the application requirements. So we
put this component in the application layer.

 2) Preference Manager: This component is designed for the
end users of the applications, which are developed on top of
Prottoy. It provides the facility to enable or disable the
participation of any artefact of the environment in the
application based on their preference.

 D. Implementation of AwareMirror using Prottoy

 Figure 5 shows the architecture of AwareMirror using
Prottoy. The AwareMirror and the toothbrush are wrapped
into the artefact wrappers. The three web services are also
wrapped in three distinct wrappers. During the deployment,
these artefacts communicate with the resource manager and
register themselves by providing their identities. Application

deals with both types of artefacts (physical like toothbrush
and virtual like web service) using the virtual artefact
interfaces. That means application creates instances of virtual
artefact by providing the properties of the required artefact.
Virtual artefact internally communicates with the resource
manager to locate the AwareMirror, the toothbrush and the
web services. Once these are found, then the application
subscribes to the toothbrush and AwareMirror for context
information. When the application receives appropriate
context information (interpreted by the interpreter), it
communicates with the web services through the virtual
artefact and then actuates the rendering service of
AwareMirror to display the information. Application uses the
interpreter to interpret the context information received from
the artefacts to map into application specific values. Also the
end users of the AwareMirror application can control the
participation of the artefacts by the preference manager
component.

Fig. 5. Implementation of AwareMirror using AwareMirror

 Virtual artefact solely hides all the communication details
and isolates all access issues thus simplifying application
development considerably.

E. Feature Comparison

Bazaar’s primary focus is on providing a world model in a

transparent way centering on the sentient artefact. For that
purpose Bazaar’s approach is different from Prottoy. As we
have shown Bazaar provides various information of the real
world beyond location to facilitate suitable modeling.
However modeling the real world is slightly different than the
daily life context aware applications. Thus we felt for another
framework concretely focusing on the context aware
applications and that's how Prottoy came into the scene. In the
following (Table II) we are providing a comparison of the
features between these two frameworks.

Fahim Kawsar, Kaori Fujinami, Tatsuo Nakajima 116

Table II
Comparison between Bazaar and Prottoy

Feature Bazaar Prottoy

Motivation Providing a world
model.

Providing a seamless
platform for context-
aware application
development

Approach Centralized and
bottom-up. Artefact
itself informs/notifies
it’s information.

Distributed and top-
down, Application
queries artefact from
information/event
notification

Location-Model Inherent location model
is present.

No location model is
present. Location
information is statically
updated.

Attribute Independence Complete. Application
does need to know any
attribute about the
artefact.

Partial. Application
needs to know the
artefacts capability to
acquire the
information.

Security Support No support. Supported.
Plug-n-Play Support No support. Full Plug-n-Play via the

Resource Manager
Event Notification Partly event based.

Application needs to
query for events.

Completely event
based. Application can
be notified instantly
about low-level events.

Context History
Support

No historical
information is
provided.

Context historical
support is provided.

Proxy Support Not supported. Supported.
Preference Support No support. Supported.

However, since Bazaar’s initial goal is to provide a real

world model, some features like proxy, security or preference
support etc. should not be considered as evaluation criterions
between the two frameworks. Of course both the architectures
support all other standard requirements like context
specification, separation of concern, transparent
communication (spatial and temporal independence), constant
availability etc.

V. DISCUSSION
This section discusses about several issues. We have

provided our experience on the basis of the performance,
advantages, and drawbacks of sentient artefacts and the two
middlewares. However one point to note here is that: though
we have discussed only one application in this paper, our
actual experience has been aggregated from various
applications [7][8][17][18][26] that we have developed.

A. Sentient Artefact

For developing context-aware application, drawing practical
real life scenario plays the key role. By augmenting
appropriate artefacts with context sensing capability and by
integrating these artefacts in one or more applications, we can
eventually implement those scenarios. The major strength of
considering everyday object as context source is the natural
interaction. Users need not to learn any new technology; they
are using the artefacts in the same manner they are used to.

We are not offering them new devices, rather augmenting their
daily life objects with sensing capability. As a result our
approach is well accepted by the end users. This acceptance
test was done for several applications that integrate multiple
artefacts [7][16][17].

 Major Observations:

 However, there are a few issues that we have identified
and which require further discussions. First and most
important is how can we make a generalized artefact that can
be utilized in multiple scenarios. We must not develop
application/scenario specific artefacts. Thus deploying
artefacts with “one to many” attribute is a big challenge. From
our experience we have identified that it is very difficult to
generalize an artefacts capability for providing contextual
information as same artefact can be used in different
applications in different manner. Still now we could not come
up with a guideline that can help us to build a generalized
artefact.

The next issue is what types of sensors are suitable for an

artefact and where to fabricate it. From our experience we
have found that, to answer this question first we have to
observe the target environment and the available artefacts.
Then we have to identify what information we are looking for
and what sensors are appropriate for providing the
information. Once this analysis is performed, then we can pick
appropriate artefact and can fabricate the sensors to them. In
most of the cases there are several alternatives, so we cannot
confine strict rules here. For example: In AwareMirror we
need to identify the presence of a person. For that we used the
toothbrush augmented with an accelerometer and an RFID tag.
These two provides state of use and location. Thus combining
these information we can infer users’ presence. However we
can also use a shaver or a comb for the same purpose.
However, the reason for which we picked the toothbrush is
that toothbrush is a personal belonging that is rarely shared
than the other two. So such ad hoc reasoning may lead to the
selection of appropriate artefacts.

Final issue related to the sentient artefact is what and how

context information can be modeled. In our approach we have
provided state-of-use, location and properties (owner, type,
color etc.) of the artefact as the contextual information. The
device driver running on the sentient artefacts aggregates this
information. Also some of these are predefined or can be
manually changed. However we are not claiming these are
sufficient. A new application may come up with a new
requirement. So, we need a guideline that will help us to
model the low-level sensor data into higher-level context. One
alternative can ontological based context modeling from raw
sensor data at individual artefact. Further more same sensor
data can be modeled in different manner for providing
different context. We cannot yet confine any rule for
prescribing such context calculation. Thus this issue poses a
great challenge for the researchers.

ubiPCMM 2005

117

B Bazaar
 Performance and Observation:

 The primary motivation behind the development of these
frameworks was to provide a seamless platform for integrating
multiple sentient artefacts in context-aware applications.
Bazaar was our first attempt where we tried to model the real
world exploiting the features of sentient artefacts. Bazaar is
successful in hiding the heterogeneity among the artefacts and
providing a shared repository to the applications. Application
developers can use the APIs provided by Bazaar to manipulate
the artefact in an intuitive manner. They don't need to consider
the low level detail of communication or context management.
Very simple query semantics are provided by which
application can query specific property of the artefacts. Also
these properties are implemented as a key-value pair, thus
adding new property to the artefacts is relatively simple.

The shared repository can support multiple applications at

the same time with current context information. So integrating
multiple artefacts has no effect on the applications’
performance. Thus application development process is very
simple, as we have seen in the AwareMirror application. Once
the appropriate artefact is deployed, the control flow of the
application is clear and smooth due the high level abstraction
support from Bazaar. Application only queries the repository
to know the context information and actuate service
accordingly. So, application deals with the repository for
contextual information. Further more Bazaar removes the
typing conflict and attributes dependency. By providing a
bottom up hierarchy Bazaar relieves the developer from
knowing and analyzing the artefacts’ classes and attributes in
advance. Such simplicity makes Bazaar very flexible to
handle.

 Drawbacks of Bazaar:

 However, Bazaar has some drawbacks also. The
centralized approach lacks from the fact of single point of
failure. Also because of the single-entity, context management
is difficult when artefacts increase thus paying a scalability
penalty. Also Bazaar does not support plug-n-play features.
Thus automatic join/leave of the artefact could not be
supported. As we have seen, in the AwareMirror application,
Bazaar could not handle the virtual sentient artefacts like web
services. So the application developer needs to manipulate
them manually. This requirement actually was not identified
when we deploy Bazaar, when our focus was on real world
modeling. Also complex querying is not well supported in
Bazaar.

 Though Bazaar isolates attribute based access to real world,

from our experience we have identified that developers often
made some mistakes that are revealed at run time. For
example, if a developer wants to use a “chair”, but by mistake
he/she types “chari”. Bazaar could not provide support for
such errors. However, as we have mentioned in the future
work section that we are working on providing artefacts’

specification to the developer during the development time to
reduce the probability of such errors.

 C. Prottoy
 Performance and Observation:

 To compensate some of these issues we have build the
second framework. Prottoy’s primary goal is to provide a
seamless platform for the application development exploiting
it’s distributed nature. This is because during application
development we felt the difficulty of accessing/interfacing
with multiple sentient artefacts that have different access
protocols. If the application developer has to handle these
heterogonous protocols, application development becomes
really cumbersome. One of the major goals of Prottoy is to
hide this heterogeneity by providing a unified interface.
Application development on top of Prottoy is fairly simple. To
be specific, developers only provide the context to action
mapping rules. Once the artefacts are wrapped in the artefact
wrapper template, applications can communicate with them in
a unified way via the virtual artefact interface. Even the
application does not need to know the artefact specific
information or even the resource manager. Such simplicity and
isolation of the access issues make the application
development very simple and rapid. Because of its distributed
nature, scalability is not a problem. So any number of artefacts
can be integrated in a seamless manner to several applications,
as long as the artefacts are wrapped in artefact wrapper.

The virtual artefact and artefact Wrapper in conjunction

provide the generic interface for everything from a sentient
artefact to a single sensor to a web service and to an actuator.
The artefact wrapper provides the generalization that allows
the actual artefact to be replaced anytime with another one.
The proxy service is a unique feature of Prottoy. Some of the
existing systems provide storage functionality at the artefact
layer, our argument is that if the artefact itself is absent in that
case the storage is also absent. We think the best use of the
context storage or history is the prediction of the context, so it
should be somewhere that can be accessible when the artefact
is absent. Virtual artefact perfectly solves the problem by
hosting the storage and providing proxy service. While using
Prottoy, application developers are free from network
management issues. The three-layer architecture separates the
application from the physical space completely. Prottoy’s
overall communication model is event based. All the events
are handled at real time with proper functioning. Prottoy
provides both subscribe-publish and request-response event
models. Furthermore application code is completely
independent of Prottoy.

Prottoy’s distributed nature compensates the problems of

centralized approach of Bazaar; also the resource manager
(both global and local) can handle the issue of plug-n-play
support. Further more in Prottoy any number of
information/properties regarding artefact can be provided at
deployment time or later. Also Prottoy hides the difference

Fahim Kawsar, Kaori Fujinami, Tatsuo Nakajima 118

between the physical artefacts and virtual artefacts like web
service. Thus application developers can use them in a unified
manner. So Prottoy could handle some of the issues that
Bazaar suffers from.

 Drawbacks of Prottoy:

 In spite of having these features, from our experience we

have identified that Prottoy suffers from some problems that
limit its performance. There is no inherent location model in
Prottoy; so artefacts location information cannot be updated
dynamically. Currently this information is manually updated.
One solution to this problem is adopting Bazaar’s location
detector component. Prottoy cannot advertise automatic
contextual information like Bazaar. (The local resource
manager in Prottoy advertises artefacts capability) So
applications need to explicitly subscribe/query the artefacts
information. This is a vital issue when we consider the real
world model. We need substantial level of information from
the underlying environment beyond location. In this respect
Bazaars performance is well justified. Also Prottoy’s
functionality is vastly dependent on artefact wrapper. All
sentient artefacts must need to be wrapped by artefact wrapper
for Prottoy’s functionality.

Another issue is the query support. Currently Prottoy

provides only AND operation, that is artefacts properties and
capabilities can only be concatenated for artefact searching.
Prottoy cannot handle other combinations (like OR or XOR
etc.) However from the application development experience
we have figured out that our mere AND support is not enough.

Prottoy attempts to provide a generic interface by hiding the

communication detail, however we cannot prescribe this
generalization for heterogeneous sensors. That means how can
we generalize the sensor specific APIs. We could not find any
suitable answer to this question. Also hiding communication
from the applications does not always provide optimum
performance. For example how can we ensure such
communication in a generic way when conserving energy is a
major requirement (like to communicate with the artefacts
connected via wireless network)? Also the proxy and security
component of Prottoy is immature in terms of functionalities.

B. Future Work

In the previous sub-section we have described the problems
that we are facing currently. Our current research
investigations are challenging those issues. We are focusing
on finding a suitable location model that can be adopted for
optimum functionality. The sentient artefact generalization
and context modeling is another big hurdle that we are trying
to cope with. Several other features that we have introduced in
our two frameworks seek further clarification. For example,
the access controls mechanism or proxy module’s logic. We
believe that the simple IP filtering technique used in the
current Prottoy prototype is not suitable for all the

applications. We are trying to figure out more appropriate
mechanism for the security measure. Regarding the proxy
service, currently we have used only the mean of the stored
values and the most recent value, but more sophisticated
technique may lead to better predictions. Also, what sort of
applications are the appropriate clients for the proxy service
and to what extent? The preference component in the current
version only provides a selection-based approach via a GUI.
However, we don’t feel such GUI based preference is suitable
for a context aware application. We are investigating to make
this component more realistic and effective. One alternative is
preference by demonstration. We feel this preference policy is
very important for the practical deployment of the context
aware applications.

Complex query support is another issue. Rule based
technique has already in the literature but we believe such rule
increases the cognitive burden of the developers. We are
currently working on a prototype physical space programming
IDE [20]. We feel physical space IDE will reduce the
complexity of queries. With such IDE the developer will be
automatically informed of available artefacts as he/she
plugged into local environment thus isolating the necessity of
complex queries. We are investigating all these issues with
great interest and hope to come up with some interesting
results soon.

VI. RELATED WORK

 In this paper we have demonstrated our approach: sentient
artefact as context source and middlewares for supporting
application development. So, in this section we have cited the
related work from two points of view; firstly current trend
related to context source and secondly existing context-aware
application frameworks.

 A. From Context Source Point of View

 Most of the context aware projects use artefacts that are

either traditional general purpose computing platforms ranging
from small handheld to large sized high end computers like
ParcTabs, or dedicated artefacts designed for providing
specific contextual information like Active Badge infrared
sensor. However our work is different from these two
approaches as we concretely focus on everyday objects for
context capturing without compromising their primary role.
Digital Décor [12] project augments traditional drawer and
coffee pots to use as a smart storage and a media for informal
communication respectively. However users are responsible
for explicitly using these artefacts for their services. Also they
only provide some services (searching, communicating with
people etc.) rather than any contextual information. Tangible
Bits [10] project attempts to bridge the physical world and
virtual world by providing interactive surface, graspable
objects and ambient media. However such explicit dedicated
interfaces violates natural interaction paradigm and natural
augmentation of conventional everyday objects.

ubiPCMM 2005

119

Recently one Internet service [27] provides similar notion
as ours by providing activity information of remote elderly by
capturing the state of coffee pot. Although they have
augmented everyday object the consumer of this information
is not the person who uses the system. It is a kind of
monitoring system, which does not provide any contextual
information. Paradiso’s work [15] in wearable computing
arena matches our vision as he has exploited sensor-
augmented footwear to obtain contextual information. TEA
[11][22] project attempts to embed various sensors to augment
handheld devices to provide contextual information. However
they only focus on handhelds. MediaCup [21] projects and its
succeeding SmartIts [29] provide insight into the
augmentation of artefacts with sensing and processing. Our
work is greatly influenced by them and exploits the Aware
Artefact model introduced in [11]. However our sentient
artefacts do not require any explicit interaction as MediaCup
or SmartIts based artefact requires. Our approach is to make
artifact aware but not their user aware of this fact. Sentient
artefacts are mere everyday artefacts without any noticeable
feature. Users manipulate them in the natural way they are
used to with. They don't need to do something explicitly to
make something happen. This natural feature distinguishes our
work from other projects.

B. From Middleware Point of View

 Currently there exist a number of context aware application
frameworks in the literature. Usually, two approaches have
been investigated for context-aware framework. One is the
centralized server approach, like Schilits System [24] or
Contextual Information Service [14] and the other is the
distributed approach like Context Toolkit [2] or Speitzer’s
work [23].

Centralized frameworks provide fair performance from the
point of view of context acquisition from the sensors and
providing interpreted context via standard APIs. However they
suffer from the fact of single point of failure and extensibility
concerns. Also, collecting information from several sources in
one place makes the framework complex and maintenance
becomes difficult. Bazaar is centered on centralized
repository. However, as the context sources are distributed
among the sentient artefacts, the repository itself is not
responsible for modeling or generating the context. Prottoy’s
approach is different from these as it completely distributes
the context sources into multiple artefact wrappers.
Application can communicate to specific context sources and
can interact with them via the virtual artefact seamlessly. Thus
scalability is well supported in Prottoy.

Schilit’s System [25] deals with the context awareness by
Device Agents that maintain the status and the capabilities of
the devices, User Agents that maintain the user policies and
Active Maps that maintain the location information of the
devices and the users. Resource manager and preference
component in Prottoy provide the same functionalities. In

addition, by introducing features of the artefact wrapper and
the virtual artefact, it provides the developer much more
control and flexibilities over the physical space and the
application development process. Bazaar’s information
repository actively performs the task of Device Agents and
Active maps. However the other components of Bazaar further
enhance the application development process.

Among the distributed ones, Context Toolkit [2] focuses on
the component abstraction by providing the notion of Context
Widget and Context Aggregator. Discoverer manages these
components and additionally there is a Context Interpreter
component that performs the task of context interpretation.
Context Toolkit provides very low-level abstraction.
Developer needs to provide the details about the context
source like location, port etc. Also, the application is
inherently dependent on the framework as the application is
tightly coupled with the architecture. That means application
needs to extend the architecture component and manipulate
accordingly. Such low level complexity makes application
development very cumbersome. Bazaar approach is different
than Context Toolkit. Application can access the sentient
artefacts by the shared repository solely without concerning
any low level detail. Prottoy takes the Context Toolkit
architecture and generalizes it in a single component namely
virtual artefact. Using Prottoy, the applications become
independent from the context infrastructure as the virtual
artefact handles all the lower level tasks. Even the applications
do not need to know about the resource manager. Applications
only use the virtual artefact as a generic component that
provides all the infrastructure supports. Prottoy also hides the
context implementation from the context specification

Speitzer [23] proposed another distributed architecture
based on multicast communication, where context information
is multicast among the members of the multicast group.
However the disadvantages of their approach are the
increasing computation and communications thus paying a
scalability penalty. For example an application within a
multicast group will receive context information even if it
does not request for it. The Stick-e Notes system [13] provides
simple semantics for writing rules that specify what action to
perform based on the acquired context, mainly focusing on
non-programmers to author context aware services. Both
Bazaar and Prottoy generalize this context acquisition from
programmer’s point of view. Stick-e Notes can be thought of
as an application on top of Bazaar and Prottoy.

The Sentient Computing Project [1][20] utilizes Active Bat
location system to provide an architectural base for indoor
application exploiting a world model. The approach of Bazaar
and Prottoy is different from the point of view that they offer
the applications to create a context aware environment by
constructing an array of artefacts. It means Bazaar and Prottoy
specialize the world model creation by allowing developers to
construct the model as they want. HP Cool Town [5]
encapsulates the world by providing web presence of place,

Fahim Kawsar, Kaori Fujinami, Tatsuo Nakajima 120

people and thing and allows interaction with web presence of
these entities primarily exploiting RF technology. Cool Town
supports only web based context aware applications where
Bazaar and Prottoy support any classes of context aware
applications. Easy Living [4] focuses on an architecture that
supports the coherent user experience as users interact with
variety of devices in a smart environment. Easy Living also
utilizes the notion of world model. Open Agent architecture
[6] is an agent-based system, which exploits a centralized
black board to support the contextual behavior. In contrast to
these systems, Bazaar and Prottoy provides a more generic
abstraction as developer has the flexibility to construct the
model by manipulating the sentient artefacts.

VII. CONCLUSION
In this paper we have shared our experiences on building
context-aware applications. We have demonstrated our
approach by a real life application development process and
have discussed our findings and difficulties. Two different
frameworks have also been presented that we have exploited
for developing the applications. Context-Awareness is a key
concept of future computing, we believe our experience report
will help the developers to understand the problems for
realizing some of the issues that are limiting the success of this
key concept. We hope the workshop will provide us with a
good opportunity to share our experiences, to discuss the
complex issues that mentioned in the paper with the
researchers and to identify the probable path towards
resolution.

REFERENCES
[1] A. Harter, A. Hopper and P. Steggles “The Anatomy of a Context-

Aware Application,” In Mobile Computing and Networking, pages 59-
68, 1999

[2] A. K. Dey, G. Abowd and D. Salber “A Conceptual Framework and a
toolkit for supporting the rapid prototyping of context-aware
applications,” Human-Computer Interaction, Vol-16 2001.

[3] A. Schmidt and V. Laerhoven. “How to build smart appliances,” IEEE
Personal Communications, pages 66-71, 2001

[4] B. L. Brumittet, B. Meyers, J. Krumm, A. Kern and S. Shafer “Easy
Living: technologies for Intelligent Environments” In the proceedings of
the 2nd International Symposium on Handheld and Ubiquitous
Computing ‘2000

[5] C. Deborah and P. Debaty. “Creating Web representations for Places” In
the Proceedings of the 2nd International Symposium on Handheld and
Ubiquitous Computing ‘2000.

[6] C. Philip R. A. Cheyer, M. Wang and S. C. Baeg “An Open Agent
Architecture,” In the proceedings of the AAAI Spring Symposium Series
on Software Agents,’94

[7] F. Kawsar, K. Fujinami and T Nakajima “Design and Implementation of
a Software Infrastructure for Integrating Sentient Artefacts,” The 2nd
Annual International Conference on Mobile and Ubiquitous Systems:
Network and Service, July 2005 (To be published)

[8] F. Kawsar, K. Fujinami and T Nakajima “Prottoy: A Middleware for
Sentient Environments,” The 2005 IFIP International Conference on
Embedded And Ubiquitous Computing. Dec 2005, (Submitted)

[9] G.D. Abowd “Software Engineering Issues for Ubiquitous
Computing”, In Proceedings of the 21st International conference on
Software Engineering, pages 75-84. IEEE Computer Society Press 1999.

[10] H. Ishii, and B. Ullmer “Tangible Bits: Towards Seamless Interfaces
between People, Bits and Atoms,” CHI 1997

[11] H.W. Gallerson, A. Schmidt and M. Beigl “Adding Some Smartness to
Devices and Everyday Things,” WMCSA 2000

[12] Itiro Siio, J. Rowan, N. Mima and E. Mynatt “Digital Decor: Augmented
Everyday Things,” Graphics Interface 2003

[13] J. P. Brown “The Stick-e Document: A framework for creating context
aware applications”, In the proceedings of the Electronic Publishing ’96

[14] J. Pascoe “Adding generic Contextual Capabilities to Wearable
Computers ," In the Proceedings of the Second International Symposium
on Wearable Computers, Pages 129-138. IEEE Computer Society Press.
Oct, 1998

[15] J. A. Paradiso, K. Hsiao and A. Benbasat “A. Interfacing the Foot:
Apparatus and Applications,” CHI 2000 Extended Abstracts

[16] K. Fujinami, F. Kawsar and T. Nakajima. “AwareMirror: A
Personalized Display using a Mirror” In the proceedings of International
Conference on Pervasive Computing (Pervasive 2005), May 2005

[17] K. Fujinami and T. Nakajima. “Towards System Software for Physical
Space Applications” In Proceedings of ACM Symposium on Applied
Computing (SAC) 2005, March 2005.

[18] K. Fujinami, T. Yamabe, and T. Nakajima. “Bazaar: A Conceptual
Framework for Physical Space Applications.” In The 2nd International
Symposium on Ubiquitous Computing System (UCS2004), November
2004.

[19] K. Fujinami, T. Kambe and Tatsuo Nakajima, “BASE: An Interactive
Location-aware Development Tool for Sentient Environments”, In the
Poster Proceedings of the Seventh International Conference on
Ubiquitous Computing, UbiComp2005 (Submitted)

[20] M. Addlesee, R Curwen, S. Hodges, J. Newman, P. Steggels, A. Ward
and A. Hooper. “Implementing a Sentient Computing System” Cover
Feature in IEEE Computer, Vol. 34, No. 8, August 2001 pp 50-56

[21] M. Beigl, H.W. Gallerson and A. Schmidt “Media Cups: Experience
with design and use of Computer Augmented Everyday Objects,”
Computer Networks, special Issue on Pervasive Computing, Mar ’2001

[22] M. Beigl, T. Zimmer and C. Decker. “A Location Model for
Communicating and Processing of Context,” Personal and Ubiquitous
Computing 6(5-6): 341-357, Dec, 2002

[23] M. Spreitzer “Providing Location Information in a Ubiquitous
Computing Environment”. In Proceedings of the fourteenth ACM
symposium on Operating System Principles, pages 270-283. ACM Press
1993

[24] M. Weiser “The Computer for the 21st Century” Scientific American,
Vol. 265, No.3 1991

[25] N. B. Schilit. “System Architecture for Context Aware mobile
Computing” PhD Dissertation, Columbia University New York, 1995

[26] T. Yamabe, K. Fujinami and T. Nakajima “Experiences with Building
Sentient Materials using various sensors,” In the Proceedings of the 4th
International Workshop on Smart Appliances and Wearable Computing
(IWSAWC), pages 445-450, Mar. 2004

[27] www.mimamori.net
[28] www.naturalinteraction.org
[29] www.smart-its.org

Fahim Kawsar is a MS student in Computer Science
Department of Waseda University. His research interest
includes Context-aware Computing, Human Computer
Interaction, Operating Systems and Web Programming.

Kaori Fujinami is an assistant professor of Department
of Computer Science in Waseda University. His research
interest includes Context-aware Computing, Physical
Space Oriented Programming, and Information
Presentation.

Tatsuo Nakajima is a professor of Department of
Computer Science in Waseda University. His interests are
Operating Systems, Distributed Middleware, Real-time
Systems and Ubiquitous Computing.

