
 1

An Efficient Token Based Algorithm for Mutual Exclusion

In Distributed System
Fahim Kawsar, Md. Shahariar Saikat, Dr. M. A. Mottalib.

Department of Computer Science and Information Technology
Islamic University of Technology

ABSTARCT

Many distributed computations involving the sharing of resources among various processes require that
a resource be allocated to a single process at a time. Therefore, mutual exclusion is a fundamental
problem in any distributed computing system. This problem must be solved to synchronize the access
to shared resources in order to maintain their consistency and integrity. The major goal of this paper is
to get the reader acquainted with a new approach towards the ring based technique for mutual
exclusion in a distributed system. An algorithm is proposed based on the idea of generating token by
the competing processes to enter the critical section and thus eliminating idle time message passing and
reducing communication overhead.

Keywords: Mutual exclusion, critical section, token, ring structure.

1. INTRODUCTION
A distributed computing system is a collection of
autonomous computing sites that do not share a
global or common memory and communicate
solely by exchanging messages over a
communication facility. In a distributed
computing system any given site (also referred to
as "node") has only a partial or incomplete view
of the total system and a system-wide common
clock does not exist. Processes must share
common hardware or software resources,
cooperating in such a way that they can work in
parallel and independently of each other. The
access to a shared resource must be synchronized
to ensure that only one process is making use of
the resource at a given time. The problem of
coordinating the execution of critical sections by
each process is solved by providing mutually
exclusive access in time to the critical section
(CS). Each process must request permission to
enter its critical section and must release it after
it has completed its execution. A mutual
exclusion algorithm must satisfy the following
requirements [1, 2]:

i. At most one process can execute its
critical section at a given time.

ii. If no process is in its critical section, any
process requesting to enter its critical
section must be allowed to do so at finite
time.

iii. When competing processes
concurrently request to enter their
respective critical sections, the selection
cannot be postponed indefinitely.

iv. A requesting process cannot be
prevented by another one to enter its
critical section within a finite delay.

To simplify, an algorithm must provide mutually
exclusive access to the source, ensure deadlock
freedom, ensure starvation freedom, and must
provide some fairness in the order that requests
are granted.

The algorithm presented in this paper is based on
the token ring approach and satisfies the
mentioned requirements in a way that minimize
the communication overhead and ensure
deadlock freedom, ensure starvation freedom.
The competing nodes generate a token for the

 2

permission to enter CS. The token traverses the
logical ring structure. A node can enter CS if and
only if it receives back its generated token.

 The performance of the algorithm presented
here will be evaluated using the total number of
messages required for a node to enter the critical
section as a criterion. Message traffic should be
minimized in order to decrease the overhead in
the communications network.

The remainder of the paper is organized as
follows. Section 2 compares our work with
existing research in distributed scheduling. The
algorithm is presented in Section 3. Finally,
Section 4 concludes the paper.

2. Previous Works

Two approaches have been used to implement a
mutual exclusion mechanism in a distributed
computing system. In a centralized approach,
one of the nodes functions as a central
coordinator. The central coordinator is fully
responsible for having all the information of the
system and for granting permission to make use
of a shared resource. In a distributed approach,
the decision-making is distributed across the
entire system. This paper only considers the
distributed approach. Distributed mutual
exclusion algorithms are designed based on two
basic principles: the existence of token in the
system or the collection of permission from
nodes in the system.

2.1 Permission-based Algorithm

All the permission-based algorithms are
introduced so far basically work in the same way.
The node that wants to enter the critical section
sends messages to other processors. Also,
associated with each request there is a
timestamp. When there are competitions for the
critical section, the one with the lowest
timestamp should enter first.

In Lamport’s event ordering mutual exclusion
algorithm [3], a node that wants to enter the
critical section, broadcasts a message to all nodes

in the system. The node that made the request
enters the critical section if it received responses
from all other nodes. After the node finished
with the critical section, it again broadcasts a
message to all other nodes. For a N node system a
total of 3(N-1) messages are required to handle
one request.

Ricart-Agarwala's algorithm [4] is very similar to
Lamport’s algorithm. The difference is that in
Ricart-Agrawala's algorithm, the response
message is deferred. Similar to Lamport’s
algorithm, Ricart-Agrawala's algorithm requires
totally ordered events and all nodes being alive.
About the number of messages, it does not need
the release message, so it requires 2(N-1)
messages for handling one request.

Maekawa's algorithm [5] associates a set of nodes
is with each node, and this set has a nonempty
intersection with every set associated with each
other node. A node i must obtain permission
from all other nodes in its home set Si before it
can enter its critical section (CS). The number of
messages required to handle a request is 3 times
the size of the request set. For a system with N
nodes, the size of each request set is roughly
square root of N. So total 3√N messages are
required to handle a request.

2.2 Token-based Algorithm

The simplest of token-based algorithm is the
Token Ring algorithm [6]. In this algorithm, the
nodes in the system form a logical ring. A token
is passed around the ring. A node can enter the
critical section if it holds the token. In average
N/ 2 messages are required to handle one request
in a N node system.

 In Suzuki-Kasami’s broadcast algorithm [7].
When a node wants to enter the critical section;
it broadcasts a message to all other nodes.
Whoever holds the token sends the token
directly to the node that wants the token. The
algorithm requires N messages for handling each
request.

 3

In Raymond’s tree-based algorithm [8] the token
is always kept at the root node. When a node
wants to enter the critical section, it sends a
request to its parent. The parent sends a request
to its parent, recursively, this request will reach
the root node. The root node, upon receiving the
request sends the token down to the child that
requested the token and is on top of the request
queue. Once the node gets the token, it can enter
the critical section. In this algorithm, it requires
an average of 2logN messages for handling each
request.

3. The Proposed Algorithm
Our proposed algorithm is based on the token
ring algorithm. The following assumptions and
conditions for the distributed environment are
considered while designing the algorithm:

i. All nodes in the system are assigned unique
identification numbers from 1 to N.

ii. There is only one requesting process executing
at each node. Mutual exclusion is implemented at
the node level.

iii. Processes are competing for a single resource.

iv. At any time, each process initiates at most one
outstanding request for mutual exclusion.

v. All the nodes in the system are fully
connected.

The following aspects about the reliability of the
underlying communications network should be
considered.

 Message delivery guaranteed.
 Message-order preservation.
 Message transfer delays are finite, but

unpredictable.
 The topology of the network is known.

The network may be of any topology with no
inherent ordering of the processes. In software a
logical ring is constructed in which each process

is assigned a position in the ring. The ring
positions may be allocated in numerical order of
network addresses. All the matter is that each
process knows who is next in line after itself.

Fig 1: Logical ring of unordered node on the
network.

The basic idea is that whenever a process needs
to enter a critical section it generates a token and
puts it in the network. On receiving a token a
node reacts in the following manner

i. A process P wants to enter the critical
section and generates a token, makes a
copy of the token in it’s node & passes it
to the next node. The token structure is

 token

{
 node no;
 timestamp;
};

ii. A process Q receives a token. It reacts to
the token in the following ways:

 If Q has no intention to enter
into the critical section it
simply passes the token to the
next node.

 If Q is in the critical section it
puts the token in its request list.
The request list structure is

 4

request list
{
 token
 next list;
};

When Q exits the critical
section it sends the tokens to
the next node sequentially (if
any) from its request list.

 If Q has already generated a

token but not yet received that
back it compares the incoming
token’s timestamp with it’s
generated token’s timestamp. If
it’s token’s timestamp is higher
then it passes the token to the
next node otherwise it puts the
token in it’s request list.

 If the timestamps in both the

tokens are equal then Q looks
for the node_no. If Q’s node_no
is lower (lowest number highest
priority) then it adds the token
in its request list otherwise
passes it to the next node.

iii. If the process P receives a token, it
compares the token with the stored
token copy. If it matches then (that is no
node wants to enter into the critical
section) it enters into the critical
section. When P exits the critical section
it sends the tokens to the next node
sequentially (if any) from its request list
and deletes the associated copy and
original token.

iv. If process P does not receive it’s own
generated token within a certain
timeout period (token is lost), P resends

the token with the initial
timestamp.(The timestamp that is used
while generating the first token, this
ensures no starvation)

Since each node must receive its token
eventually and at a time at most one node can
have its token mutual exclusion is guaranteed.

The algorithm is free from deadlock as there is
no way that a token traverse the ring
indefinitely. Since time stamping is used so it
ensures starvation freedom.

The timeout period for regenerating token must
be designed in such a manner that unnecessarily
no token should be resend. If multiple copies of
the same token arrive at a originator node after it
performs its operation in the CS or it is in the CS,
it absorbs the token. (Since there is no copy of
any token to be matched)

Another problem is that if a node dies there is no
way to detect it so token can be lost. To avoid
this acknowledgement of receiving a token may
be used. Thus node failure can easily be detected.
At that point the dead node can be removed from
the group and the token holder can throw the
token over the head of the dead process to the
next node down the line. Of course, doing so
requires that everyone maintains the current ring
configuration.

From the working principle of this algorithm it is
visible that for a N node system we need N
messages to be transferred for handling one
request of entering critical section.

3.1 PERFORMANCE GAIN

The most attractive feature of this newly
proposed method is that there is no need for
passing the token around the ring when no node
requires it that is idle period token passing is

 5

eliminated. It reduces communication overhead
to a great extent.

So what is the performance gain of this proposed
method? As a comparison let’s see the following
table:

Algorithm Messages/Request

1.Lamport’s
Algorithm

3(N-1)

2.Ricart-Agarwals
Algorithm

2(N-1)

3.Maekawas
Algorithm

3√N or 5√N

4.Token Ring
Algorithm

Avg N/2

5.Suzuki-Kasamis
Broadcast
Algorithm

N

6.Raymonds Tree-
based Algorithm

Avg 2LogN

7.Ours Algorithm N

N = Number of Node

Avg = Average

Fig 2: Comparison Table

So from the above table we find that this newly
proposed algorithm will provide similar
performance as some the existing techniques
provide. But the attractive potentiality of this
algorithm lies in error handling techniques. As in
all token ring algorithm if the token is lost then
detection and regeneration of the token is a big
problem. Who will be responsible for
regenerating the token and how to detect the loss
of the token?

Our proposed method handles the loss of token
in an efficient manner and as each node is
responsible for its token so the responsibility of
resending tokens completely lies on each node.
In addition due to the elimination of idle time
message passing communication overhead is
reduced.

4. CONCLUSION

The motivation towards the development of this
algorithm is to present a method that guarantee
mutual exclusion and works fairly and
efficiently. The fault tolerance capability of this
algorithm clearly makes it superior over the
existing algorithms. Considering the rapid
growth of distributed system, our presented
method may provide a lucrative approach
towards the solution of mutual exclusion
problem.

5. REFERENCES

[1] MAEKAWA, M.; OLDEHOEFT, A.E.; and
OLDEHOEFT, R.R., "Operating Systems,
Advanced Concepts," Benjamin-Cummings,
1987.

[2] SILBERSCHATZ, A. and PETERSON, J.L.,
"Operating System Concepts," Addison-Wesley,
Alternate edition, 1988.

[3] LAMPORT, L., "Time, clocks, and the
ordering of events in a distributed system,"
Communications of the ACM, vol. 21, no. 7, July
1978, pp. 558-565.

[4] RICART, G. and AGRAWALA, A., "An
optimal algorithm for mutual exclusion in
computer networks," Communications of the
ACM, vol. 24, no. 1, Jan. 1981, pp. 9-17.

[5] MAEKAWA, M., "A sqrt(n) algorithm for
mutual exclusion in decentralized systems," ACM
Transactions on Computer Systems, vol 3, no. 2,
May 1985, pp. 145-159.

[6] AGRAWAL, D., EL ABBADI, A., "An
efficient and fault-tolerant solution for
distributed mutual exclusion," ACM Transactions
on Computer Systems, vol. 9, no. 1, Feb. 1991,
pp. 1-20.

[7] SUZUKI, I. and KASAMI, T., "A distributed
mutual exclusion algorithm," ACM Transactions

 6

on Computer Systems, vol. 3, no. 4, Nov. 1985,
pp. 344-349.

[8] RAYMOND, K., "A tree-based algorithm for
distributed Mutual Exclusion," ACM
Transactions on Computer Systems, vol. 7, no. 1,
Feb. 1989, pp. 61-77.

[9] ANDREW S. TANENBAUM, “Distributed
Operating Systems”, Prentice Hall, 1995

[10] PRADEEP K SINHA”, Distributed Operating
Systems, Concepts and Design”, IEEE Press, 1998

