
Resource Characterisation of Personal-Scale Sensing Models on
Edge Accelerators

Mattia Antonini∗
FBK CREATE-NET and University of

Trento
Trento, Italy

m.antonini@fbk.eu

Tran Huy Vu∗
Singapore Management University

Singapore, Singapore
hvtran.2014@smu.edu.sg

Chulhong Min
Nokia Bell Labs
Cambridge, UK

chulhong.min@nokia-bell-labs.com

Alessandro Montanari
Nokia Bell Labs
Cambridge, UK

alessandro.montanari@nokia-bell-
labs.com

Akhil Mathur
Nokia Bell Labs and UCL

Cambridge, UK
akhil.mathur@nokia-bell-labs.com

Fahim Kawsar
Nokia Bell Labs
Cambridge, UK

fahim.kawsar@nokia-bell-labs.com

ABSTRACT
Edge accelerator is a class of brand-new purpose-built System On
a Chip (SoC) for running deep learning models efficiently on edge
devices. These accelerators offer various benefits such as ultra-low
latency, sensitive data protection, and high availability due to their
locality and are opening up interminable opportunities for build-
ing sensory systems in the real world. Naturally, in the context
of sensory awareness systems, e.g., IoT, wearables, and other sen-
sory devices, the emergence of edge accelerators is pushing us to
rethink how we design these systems at a personal-scale. To this
end, in this paper we take a closer look at the performance of a
set of edge accelerators in running a collection of personal-scale
sensory deep learning models. We benchmark eight different mod-
els with varying architectures and tasks (i.e., motion, audio, and
vision) across seven platform configurations with three different
accelerators including Google Coral, NVidia Jetson Nano, and Intel
Neural Compute Stick. We report on their execution performance
concerning latency, memory, and power consumption while dis-
cussing their current workflows and limitations. The results and
insights lay an empirical foundation for the development of sensory
systems on edge accelerators.

CCS CONCEPTS
•Computer systems organization→Embedded systems;Em-
bedded software.

KEYWORDS
resource characterisation, edge accelerators, sensing models

∗This work was done when the authors were on an internship at Nokia Bell Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AIChallengeIoT’19, November 10–13, 2019, New York, NY, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7013-4/19/11. . . $15.00
https://doi.org/10.1145/3363347.3363363

ACM Reference Format:
Mattia Antonini, Tran Huy Vu, ChulhongMin, Alessandro Montanari, Akhil
Mathur, and Fahim Kawsar. 2019. Resource Characterisation of Personal-
Scale Sensing Models on Edge Accelerators. In First International Work-
shop on Challenges in Artificial Intelligence and Machine Learning (AIChal-
lengeIoT’19), November 10–13, 2019, New York, NY, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3363347.3363363

1 INTRODUCTION
Personal-scale sensory systems are increasingly pushing the infer-
ence part of AI models to edge devices such as IoT, smartphones,
wearables, etc. This transition offers attractive benefits concerning
privacy, performance, and cost. In the last 18 months, this shift
has resulted in the emergence of a brand-new class of neural chips
aimed at inferences at the edge. The proposition is remarkable; for
the first time, we can move away from software accelerators and
push cloud-scale models into edge devices without compromising
accuracy. Naturally, these edge accelerators are uncovering exciting
opportunities for building powerful applications with complicated
learning objectives and demanding computations. There have been
several attempts to understand the performance characteristics
of human sensing models on smart devices like smartphones and
commodity devices [1, 13]. However, the characterisation of edge
accelerators is at a very early stage. To this end, we take a system-
atic look at a set of edge accelerators, their working principles, and
performance in executing a variety of human sensing models.

We benchmark seven different accelerator configurations (Google
Coral Dev Board, Google Coral Accelerator with Raspberry Pi (here-
inafter, RPi) 4B and 3B+, NVIDIA Jetson Nano with TensorFlow
GPU and TensorRT, and Intel Neural Compute Stick with RPi 4B and
3B+) running eight deep learning models with three tasks (motion,
audio, and image). We report on their execution performance con-
cerning memory, execution time, and energy overhead and share
insightful observations that lay an empirical foundation for both the
evolution of these accelerators and their usage in sensory systems.

In what follows, we first present the different accelerators and
their working principles. Then we discuss briefly the sensing mod-
els we use in the study, followed by the systematic report on per-
formance metrics of the accelerators for the models. Finally, we
conclude the paper by sharing key insights from this study.

https://doi.org/10.1145/3363347.3363363
https://doi.org/10.1145/3363347.3363363

AIChallengeIoT’19, November 10–13, 2019, New York, NY, USA Antonini, et al.

Coral Dev
Board

Coral Accelerator
+ RaspberryPi 3B+

Coral Accelerator
+ RaspberryPi 4B

NVIDIA
Jetson Nano

Intel NCS2
+ Raspberry Pi 3B+

Intel NCS2
+ Raspberry Pi 4B

CPU
Quad-Core
Cortex A53

Quad-Core
Cortex A53

Quad-Core
Cortex A72

Quad-Core
Cortex A57

Quad-Core
Cortex A53

Quad-Core
Cortex A 72

Memory 1 GB LPDDR4 1 GB LPDDR2 2 GB LPDDR4 4 GB LPDDR4 1 GB LPDDR2 2 GB LPDDR4

AI Chip Google EdgeTPU Google EdgeTPU Google EdgeTPU 128 Core
Maxwell GPU

Intel Movidius
Myriad X VPU

with 16 SHAVE cores

Intel Movidius
Myriad X VPU

with 16 SHAVE cores
On-Chip
Memory 8 MB 8 MB 8 MB Shared

with CPU
512 MB LPDDR4

+ 2.5 MB Centralized
512 MB LPDDR4

+ 2.5 MB Centralized
AI Chip Interface PCIe USB 2.0 USB 3.0 PCIe USB 2.0 USB 3.0

AI Chip OPs 4 TOPs 4 TOPs 4 TOPs 472 GFLOPs 1 TOPs 1 TOPs
Table 1: Specification of the hardware platforms used in the study.

2 STUDY PRELIMINARIES
2.1 Hardware Platforms
Different companies have proposed hardware solutions to accel-
erate the execution of deep learning algorithms at the edge of the
network. In this study, we consider seven different configurations
with three types of edge accelerators. Table 1 reports their hardware
specifications; we consider two TensorFlow frameworks for Jetson
Nano, Tensorflow GPU1 and TensorRT2.

Google Coral: In summer 2018, Google announced the edge
version of its Tensor Processing Unit (TPU) platform known as
EdgeTPU under the brand name Coral. The EdgeTPU is an appli-
cation specific integrated circuit designed to deliver up to 4 Tera
OPerationS (TOPS) per second using a power budget of 2 watts (2
TOPS/watt). This chip supports only signed integer operations at 8
and 16 bits and it comes with approximately 8 MB of on-chip RAM
used to cache the model’s parameters. Since this board has been
strictly designed for optimal inference, it currently supports only
TensorFlow Lite models that meet specific requirements [4] (e.g.,
parameter quantisation). The EdgeTPU is available in two flavours:
as dev-kit called Coral Dev Board (See Figure 1a) and as USB dongle
called Coral Accelerator. Coral Dev Board is a single board com-
puter that hosts onboard RAM, storage, and other peripherals. As
host device for the Coral Accelerator, we use Raspberry 4B (See
Figure 1b) and 3B+. The biggest difference between Raspberry Pi
(hereinafter, RPi) 4B and 3B+ regarding our benchmark study is the
AI chip interface. RPi 4B supports USB 3.0 (with a maximum rate
of 5 gigabits per second), whereas RPi 3B+ supports USB 2.0 (with
a maximum rate of 480 megabits per second).

Jetson Nano: In March 2019, NVIDIA has announced and made
available a new GPU-powered board, known as Jetson Nano, target-
ing the maker community (See Figure 1c). This board hosts a 64-bit
quad-core Arm Cortex-A57 CPU and an NVIDIA Maxwell GPU
with 128 CUDA-cores able to deliver up to 472 GFLOPs running
float operations. CPU and GPU share a common bank of 4 GB of
LPDDR4 RAM, which requires the tuning of the memory reserva-
tion between CPU and GPU. Since this board runs a full-fledged
operating system derived from Ubuntu, the board natively supports
TensorFlow 1.x compiled with GPU support and TensorRT 5.

1https://www.tensorflow.org/install/gpu
2https://docs.nvidia.com/deeplearning/frameworks/tf-trt-user-guide/index.html

Intel NCS2: Intel has made available the new Intel Movidius
Myriad X Vision Processing Unit (VPU), a low-power System-on-
Chip (SoC) designed to accelerate deep-learning deployments and
computer vision applications. This chip includes several processors
and computing units optimised for high parallelism and DNN infer-
encemaking it capable of running up to 4 TOPSwith a power budget
of 1.5 watts. The VPU is available in two different in-package con-
figurations: without in-package additional RAM and with 4GBits
(512 MBytes) in-package RAM. Intel has released a USB 3.0 don-
gle known as Intel Neural Compute Stick 2 (NCS2) that hosts the
Movidius Myriad X VPU with 4GBit of RAM. This USB stick can
be plugged as a co-processor to speed-up the inference of neural
networks. NCS2 requires the model to be optimised using the Open-
VINO framework [9]. We also consider Raspberry Pi 4B (See Figure
1d) and 3B+ as the main board for benchmarking NCS2.

2.2 Compilation Workflow
Since edge accelerators have different constraints and requirements,
different optimisations need to be applied to fully exploit the hard-
ware acceleration. Figure 2 presents the required steps for the edge
accelerators we use for our benchmark study. In this paper, we
consider deep learning models that have been implemented with
native TensorFlow or with Keras with TensorFlow as backend.

Jetson Nano: The first step is to train the algorithm by apply-
ing full-precision training which outputs a model with parameters
expressed as 32bit floating-point numbers. Then, the model needs
to be frozen to convert all the inner variables to constant and make
the model ready for the inference phase and further optimisation.
The frozen model can natively run on the Jetson Nano using native
TensorFlowwith GPU support. Jetson Nano also supports TensorRT,
a library that optimises the execution of neural networks by replac-
ing the implementations of some layers with more efficient ones.
TF-TRT converter needs information including input tensor name
and shape, precision mode (FP16 or FP32), size of the inference
batch, and size of the reserved execution memory. The output is a
TensorFlow-TensorRT frozen model ready to be deployed.

Intel NCS2: Intel NCS2 also needs the full-precision frozen
model to generate a model compatible with it. Then, the model
is converted using the OpenVINO model optimiser [10], a cross-
platform tool that runs static analysis and adjustments of the model.
The optimiser needs only the shape of the input tensor and the
floating number precision (e.g., FP16). It returns a set of files, known

	Abstract
	1 Introduction
	2 Study Preliminaries
	2.1 Hardware Platforms
	2.2 Compilation Workflow
	2.3 Deep Learning Sensing Models
	2.4 Scope of the benchmark

	3 Performance Benchmarks
	3.1 Experimental Setup
	3.2 Memory Usage
	3.3 Execution time
	3.4 Energy
	3.5 Performance Comparison (RPi 4B and 3B+)

	4 Outlook
	References

