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ABSTRACT
Large-scale mobile data studies have the potential to provide valu-
able insights regarding usage behavior of smartphone users. A ma-
jor challenge in generalising the findings of these studies is the in-
herent population diversity in large-scale smartphone usage data.
Many published studies however do not account for population
heterogeneities in their analysis, and instead present their findings
based on the aggregate usage data. In this paper, we investigate
the effects of geographical diversity on smartphone data collected
from 130 users from India, Europe and the US over a period of four
months. Our results show significant differences in daily usage
duration, session-level usage, and temporal usage patterns across
various geographies, and stress the need to account for population
heterogeneities in mobile data research and its application in real-
world systems.
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1. INTRODUCTION
Mobile phones have evolved from simple communication tools

into powerful information, communication and entertainment de-
vices. By the year 2020, it is projected that 5.4 billion people in
the world will have a mobile phone, higher than those projected
to have electricity (5.3 billion), running water (3.5 billion) or cars
(2.8 billion) [2]. Across different app stores, there are more than
4 million applications that the users can download on their phones
[1], many of them capable of capturing rich data about users and
their environment. By accurately inferring user and environment
context from this data, these apps can provide personalised, con-
textual services to the end-users and substantially improve the user
experience.

Consequently, we have seen a number of studies that have col-
lected smartphone usage data at scale, and analysed it to infer us-
age patterns. Falaki et al. [8] conducted a comprehensive study of
smartphone usage to characterise user interactions with the device
and various applications, and the impact of these interactions on
network and energy consumption. Bohmer et al. [6] extended their
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analysis to understand contextual factors that influence application
usage – for example, they found that “news applications are most
popular in the morning and games are at night, but communica-
tion applications dominate through most of the day”. Other works
have studied the effect of mobility on usage [21], notification de-
livery and reception on smartphones [15, 17, 23], energy consump-
tion [12], and predicting application usage [25].

A major challenge in generalising the findings of these user stud-
ies is the inherent population diversity in large-scale smartphone
usage data. In the human-computer interaction community, re-
searchers aim to control for population diversity in their experiment
design, e.g., by selecting participants with similar skills or demo-
graphics. In mobile data research however, this issue of population
diversity is even more critical – as many of the large-scale data col-
lection studies are done by publishing an application on app stores
(e.g. Apple Store or Google Play) [6, 15, 23], it indeed becomes
difficult to control for user diversity in the data.

Our aim, in this work, is to highlight one particular source of
user diversity (viz. geographical diversity) – and how it impacts
smartphone usage. While it is not surprising to expect diversity in
smartphone usage due to geographical variations, we observe that
many published studies on mobile data (e.g. [6, 23, 25]) do not
account for such variations even when analysing the data. Other
studies have acknowledged the user diversity (e.g. [8]), however
they did not provide in-depth analysis of how it affects smartphone
usage.

In this paper – by analysing the data gathered in a 130-user lon-
gitudinal study, we demonstrate several key differences in smart-
phone usage between users in India, Europe and United States. We
also contrast our findings with past research on smartphone usage
in another country (i.e., Korea). We found that there are signifi-
cant differences across various geographies in terms of daily usage
duration, session-level usage, and temporal usage patterns – and if
these differences are left unaccounted for, they may result in very
misleading findings about real-world smartphone usage. The paper
concludes by discussing implications of these geographical varia-
tions for mobile data studies, application development, and mobile-
based data inference models.

2. RELATED WORK
In this section, we overview two categories of past research that

are relevant to our work on investigating population heterogeneities
in mobile data.

Mobile Data Studies. Over the last few years, there have been a
number of studies on mobile data usage in-the-wild. Falaki et al. [8]
conducted a comprehensive study of smartphone usage to charac-
terise user interactions with the phone, application usage, network
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traffic and energy usage. Bohmer et al. [6] analysed contextual
factors that influence application usage. Oulasvirta et al. [16] dis-
cussed the possibility of mobile users developing a checking habit
that involves brief and frequent content consumption.

Various techniques have been proposed [19, 20, 22] for contin-
uously and unobtrusively gathering mobile usage and sensor data.
Based on such data, researchers have proposed smart home screens
and launcher apps to improve user experience [4, 28] and device
battery life [9], as well as developed inference models for predict-
ing the user’s next application [25, 26]. Other works have studied
the effect of mobility on usage [21], notification delivery and re-
ception on smartphones [15, 17, 23], and energy consumption [12].

Data Heterogeneities. Researchers have identified various hard-
ware and software heterogeneities that impact inference techniques
on mobile phones. Blunck et al. [5] discussed how variations in
GPS duty cycling across platforms can adversely affect data quality
and performance of inference models. Stisen et al. [27] highlighted
that run-time factors such as instantaneous I/O load can lead to an
unstable sensor sampling rate, thereby compromising the data qual-
ity. Das et al. [7] found significant hardware variations in acoustic
components such as microphones and micro-speakers of a mobile
device.

As a solution to such device heterogeneities, Lu et al. [13] pro-
posed a framework which can identify stress using microphones in
diverse acoustic environments. Lu et al. [14] presented a continuos
sensing platform robust to accelerometer variations and biases. To
account for population diversity in sensor data, Lane et al. [10]
looked at incorporating inter-person similarity measurements from
crowd-sourced sensor-data into the classifier training process.

3. RESEARCH STUDY
In this section, we present our data collection system, and give

an overview of the participant demographics and our data analysis
methodology.

3.1 System
In order to collect smartphone usage data, we developed an An-

droid application and released it on Google Play. The app, im-
plemented for Android 5.0+, runs as a background service on the
user’s phone and passively records all usage sessions on the device.
More specifically, the application collects data on Screen Events
(i.e., times when the screen was turned on, off, or unlocked), App
Events (i.e., times when an app is in foreground or background),
Call Events (i.e., times of incoming, outgoing, or missed calls) and
Notification Events (times when a notification is received, read, or
dismissed).

When the app is first launched, users are asked to fill a short
demographic questionnaire in which they input their age, gender,
and country. Next, users are guided through a permission wizard
wherein they provide permissions to the app for accessing notifica-
tions and application usage data on their phone. Both these permis-
sions are categorised as system-level permissions in Android, and
and must be manually approved by the user from the Settings Menu
on their phone. The apps guides the user through this approval pro-
cess, and once the permissions are granted – the app starts running
in the background to collect data logs. The logs are stored locally
on the external storage of the phone, and are periodically uploaded
to a remote server.

3.2 Participants and Data
After publishing the app on Google Play in December 2015, we

advertised it on social networks and email lists to solicit participa-

Figure 1: Example of a smartphone usage session.

tion. In total, the app was installed by 130 users from 12 different
countries. The raw data set obtained from the users until April
2, 2016 contains 40,414 call events, 630,241 notification events,
890,945 application events, and 901,624 screen events.

Out of 130 users, we selected 86 users (25 female) for our anal-
ysis who were i) based in our target geographies, i.e. India, Europe
or the US, and ii) had kept the app installed on their phone for at
least one month, which we believe is a sufficient duration to get
representative usage data.

The shortlisted users were mostly young adults aged between
18 to 30 years, and 65% were students. Of the 86 users, 54 were
from India, and the remaining 32 were from 6 different European
countries and the US. For our geographical analysis, instead of
analysing data at a per-country level, we decided to group the users
from Europe and US into one category called ‘Western Users’ and
compared their usage to ‘Indian Users’. There were primarily two
reasons for this choice: i) to ensure that we have sufficient num-
ber of users in each comparison group, and ii) Europe and US, al-
though geographically separate, are both developed regions with
high smartphone penetration for a number of years. On the con-
trary, smartphone adoption in India is a relatively recent phenomenon,
and the smartphone penetration is much lower [3]. Hence, even
with the aforementioned categorisation, it will be possible to con-
trast the smartphone usage among two diverse groups.

3.3 Data Analysis
Similar to the prior work on mobile usage analysis, we also cen-

tred our analysis around a usage session as shown in Figure 1. A us-
age session is defined as the period between screen-on and screen-
off – as such, we processed the Screen Events in the logs to generate
usage sessions. On Android, events such as notification arrival and
battery charging can switch on the screen automatically – therefore,
for an accurate representation of usage sessions, we filtered out the
sessions that did not elicit any user interactions (i.e., screen unlock-
ing). In each session, a user can access 0, 1 or multiple applications
– as such, we processed the Application Events in the logs to find
the apps used in each session.

Smartphone usage sessions can be triggered by external cues
(e.g., through a notification or a call), or internal cues (i.e., user
motivated). To differentiate the two kinds of sessions, the notifica-
tion and screen events were processed together; we categorised a
session as ‘externally cued’ if i) the session was initiated within 30
seconds of any notification arrival, or ii) if any notifications from
the apps used in the session arrived between the current session and
the preceding session [11]. All other sessions were categorised as
‘internally cued’.

Finally, before comparing the usage between Indian and West-
ern users, we measured the skewness of each comparison metric
(e.g. session duration, session count, application count) within the
group, and found that the data distributions for all metrics were
within the bounds of a normal distribution (−1 < skewness <
1).



4. STUDY RESULTS
We now analyse the aggregated usage, session-level usage, and

temporal usage across the two user groups (Indian users and West-
ern users), and also contrast them with prior research on mobile
data usage.

4.1 Aggregate Usage
We begin by comparing smartphone usage of the two groups in

our dataset (Indian and Western) through unpaired two-tailed t-test,
and report the p value, t statistic and Cohen′s d. In addition, we
also contrast the usage of these two groups with the findings of Lee
et al. [11] regarding smartphone usage of young ‘Korean’ users.
In their study, Lee et al. [11] investigated smartphone addiction
among Korean students; as such, they collected smartphone usage
data from ‘addicted users’ and ‘regular users’ for nearly one month.
For our geographical analysis, we use the data from ‘regular users’
in [11] and compare it to the smartphone usage of participants in
our dataset. The participants in our dataset also belong to a simi-
lar age group as those in [11] and majority of them are students;
therefore, we believe it is reasonable to compare the two datasets.

Indian Western p t d Korean [11]
Usage duration
(mins) per day

149 113 0.04∗ 0.51 1.96 207

Sessions per day 91 66 0.01∗ 2.6 0.56 100.1
Unique apps 80.5 82.4 0.8 -0.15 0.1 NA
Entropy top-5 3.42 3.55 0.38 -0.87 0.18 1.96
Entropy top-10 3.89 4.03 0.34 -0.95 0.2 2.53

Table 1: Comparison of aggregate usage across user groups.
Results of unpaired two-tailed t-test are provided for groups in
our dataset (∗ indicates significant difference between groups,
p < 0.05)

Table 1 shows the aggregate usage across different groups. We
found a significant difference (t = 1.96, p < 0.05, Cohen′s d
= 0.51) between the mean usage duration in a day between Indian
users and Western users. While Indian users had a mean usage du-
ration of 149 minutes per day, western participants used the phone
for 113 minutes per day on an average. In contrast, the Korean users
showed a much higher mean usage duration of 207 minutes per day.
Similarly, we found a significant difference between the number of
usage sessions per day across Indian and western users, with In-
dian users having nearly 38% more usage sessions in a day. Korean
users from [11] had higher usage sessions than both the groups in
our dataset. There was no significant difference in the number of
unique apps used by both groups during the study (p > 0.05).

Next, we investigate the diversity in the usage of top-k apps (or-
dered by usage duration) across users. We compute the Shannon
Entropy as a measure of Evenness of application usage. Shannon
Entropy for top-k apps denoted by H ′ is calculated using the equa-
tion below, where di denotes the relative usage duration of ith app.

H ′ = −
k∑

i=1

di.log(di)

A higher value of H ′ indicates that usage was spread evenly
across all applications, whereas a lower value of H ′ indicates that
usage was skewed towards a small number of applications.

We found no significant difference in usage diversity in top-5
or top-10 apps between Indian and Western user groups. However,
the Shannon Entropy value reported for the Korean users was lower
than our findings, suggesting that Korean users have more skewed
usage patterns for top-5 and top-10 apps.

4.2 Session-level Usage
Table 2 shows the comparison of session-level usage across dif-

ferent groups. Our analysis did not reveal any significant difference
in the mean session duration between Indian and Western users
(p = 0.8), however we observe that Korean users have 30% higher
mean session duration than the other two groups. We did observe
a significant difference in the inter-session gap between the two
groups (p < 0.02); results showing that Indian users start a usage
session every 9.6 minutes on average as compared to 16.6 minutes
for Western users and 13.61 minutes for Korean users.

Indian Western p t d Korean [11]
Mean session
duration (s)

97.8 95.3 0.8 0.22 0.05 129.9

Inter-session
gap (min)

9.6 16.6 0.02∗ 2.78 1.07 13.61

App launches
per session

3 2.4 0.01∗ 2.95 0.58 3.16

Unique apps per
session

1.91 1.71 0.01∗ 2.71 0.55 NA

Table 2: Comparison of session-level usage across groups. Re-
sults of unpaired two-tailed t-test are provided for groups in
our dataset (∗ indicates significant difference between groups,
p < 0.05)

Next, we analysed the app launch count in each session (i.e. how
many apps were launched in a session, including repetitions). A
significant difference was found (p < 0.005), and results show that
Indian users launch more apps (mean = 3.0) per session than West-
ern users (mean = 2.4). Similarly, we found a significant difference
(p < 0.01) in number of unique apps used in a session, with Indian
users exhibiting a higher unique app count.

4.3 Session Analysis
Now we analyse the nature of individual sessions. As we de-

scribed in the previous section, we categorised the sessions into
two classes: internal and external depending on how they were ini-
tiated. Both user groups had a similar distribution of sessions, with
external sessions accounting for 17.7% of all sessions for Indian
users and 18.1% of sessions for Western users. Lee et al. [11] how-
ever reported a very different session distribution for Korean users,
where externally cued sessions accounted for 79% of all sessions!

In order to account for varying session durations, we further cat-
egorised the sessions into three classes (following the methodology
of Banovic et al. [4]): glance, short, long. Glance sessions are
those sessions in which no apps are used – here a user may unlock
the phone to glance at a notification (or check the time), but does
not launch any application. A Short session is less than 60 seconds
in duration, and involves the use of 1 or 2 apps, whereas a Long
session lasts for more than 60 seconds and may involve 1 or mul-
tiple apps. Therefore in total, we had six categories for sessions (3
based on duration and usage x 2 based on initiation type).

Internal External
Indian Western Indian Western

Glance 53.4% 45.9% 8%∗ 5.2%∗

Short 11.1%∗ 16.4%∗ 4% 5.3%
Long 15.9% 19% 5.5% 6.2%

Table 3: Comparison of session types across groups. Cells
marked with ∗ indicates a significant difference between groups
(p < 0.05).

Table 3 presents the session distribution across both groups. We



found a significant difference in the percentage of External-Glance
(t = 2.27, d = 0.62, p < 0.05) sessions between the two groups.
This suggests that on receiving notifications (i.e., external cues), In-
dian users show a higher preference to glance at its content, rather
than opening the application associated with it. We also found a
significant difference in the percentage of Internal-Short session
(t = −2.6, d = 0.76, p = 0.01) between the two groups, sug-
gesting that Western users self-initiate more short duration sessions
than Indians.

Figure 2: Left: Temporal view of session counts across groups.
Right: Temporal view of session durations across groups.

4.4 Temporal Analysis
Finally, we analyse the temporal usage patterns in a day for all

the groups. To facilitate comparison with Lee et al. [11], we divided
the day in four equal buckets of six hours, and grouped the smart-
phone usage by buckets. Figure 2 presents the temporal distribution
of session counts and session durations across the user groups.

As evident from the figure 2 , we found significant differences
both in session duration and session count between 12noon - 6pm
and 6pm - 12am (all p < 0.05), with Indian users having higher
session counts and durations at these times than Western users. Ko-
rean users exhibited higher session duration and session count than
the other groups during 12noon - 6pm and 6pm - 12am.

5. DISCUSSION
We now discuss the implications of our findings for mobile data

studies, and also broadly highlight the challenges for application
design and user modelling due to geographical variations in mobile
data.

Implications for Mobile Data Research. We present two em-
pirical examples which clearly highlight the challenges posed by
geographical diversity for mobile data research. Firstly, we found
that the percentage of externally cued sessions for Korean users
(79%) was much higher than for Indian (17.7%) and Western users
(18.1%). This clearly suggests that app developers should focus
on designing better external cues (i.e., notifications) to increase
smartphone engagement among Korean users. Now hypothetically,
if this analysis on session initiation was done over aggregate data
from the three user groups (i.e. without accounting for geograph-
ical diversities) – it would have presented a misleading picture on
session initiation behavior of the users, and may not have resulted
in a concrete design guideline for app developers.

In another example, we look at the large-scale smartphone data
collection exercise by Bohmer et al. [6] which attracted participa-
tion of users from 20+ countries. In their analysis on the aggregate
data, they found that almost half (49.8%) of all smartphone ses-
sions were shorter than 5 seconds. On the other hand, our dataset
reveals that the percentage of micro-sessions (i.e., sessions shorter
than 5 seconds) was only around 22% for both Indian and West-

ern users (with no significant difference between the two groups).
The reason behind this very contrasting result however remains un-
clear: were there some countries in the dataset of [6], where users
have particularly short attention spans, which in turn affected the
aggregate statistics presented in their paper? Indeed, a geographi-
cal analysis of the data would have shed more light on these usage
variations between the datasets.

This contrast in findings is also likely to confuse application or
platform developers: should they design the mobile software plat-
form to account for very short attention spans of the user (as re-
ported by [6]), e.g. by creating and displaying content summaries
on the lock screen? Or is the current design of mobile notifica-
tions – where minimal information about the content is shown on
the lock screen – a better way to entice the users to engage with the
apps?

Implications for User Modeling. The geographical variations
in smartphone usage can also impact the accuracy of machine learn-
ing inference models in-the-wild. While many works focus on
building personalised inference models (e.g., [25, 28]), it is also
common to develop models from composite data (e.g., [18]), in
order to avoid the user cold-start problem [24]. For such composite
models, population heterogeneities (e.g., geography, age) could be
a major obstacle in their wider applicability. For example, Lee et
al. [11] developed a classification model to infer smartphone ad-
diction based on smartphone usage statistics of Korean users. If
the same model has to be applied to Indian and Western users –
who have significantly different usage behavior than Korean users
as shown in our study – it would require substantial tuning of the
model parameters to account for the geographical variations.

Tackling Other Sources of Heterogeneities. In this paper, we
focused on one particular source of diversity in mobile data (viz.
geographical) - however there are multiple other sources of hetero-
geneities that should be looked into in detail. For example, gender,
age, or profession of a user is likely to have a significant impact on
their usage behavior. However, most studies on mobile data usage
ignore these heterogeneities while presenting aggregate statistics or
building inference models. We can certainly take inspiration from
the mobile sensing literature, wherein researchers have developed
techniques to account for hardware [13, 27], software and orienta-
tion based heterogeneities [14, 27] in on-device sensors.

6. CONCLUSIONS
The immense growth in the smartphone industry, proliferation of

mobile app stores, and availability of software frameworks for con-
tinuously gathering mobile usage and sensor data has enabled us
to study mobile device usage at an unprecedented scale. However,
for mobile app and platform developers to confidently apply these
research findings to develop real-world systems, it is extremely im-
portant to improve the external validity and generalisability of mo-
bile data studies. In this paper, we showed that geographical diver-
sity in the population can lead to significant differences in smart-
phone usage patterns, which in turn, can affect the external validity
of mobile data studies and even lead to misleading results about
user behavior. As such, we urge fellow mobile data researchers to
account for population heterogeneities while analysing smartphone
usage data or developing mobile-based data inference models. We
also hope that our findings on geographical variations in mobile
data can trigger interesting discussions at the workshop, which lead
to design of better mobile data studies and systems that are robust
against population variations.
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