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ABSTRACT
Deep learning is having a transformative effect on how sensor data
are processed and interpreted. As a result, it is becoming increas-
ingly feasible to build sensor-based computational models that are
much more robust to real-world noise and complexity than previ-
ously possible. It is paramount that these innovations reach mobile
and embedded devices that often rely on understanding and react-
ing to sensor data. However, deep models conventionally demand
a level of system resources (e.g., memory and computation) that
makes them problematic to run directly on constrained devices.

In this work, we present the DeepX toolkit (DXTK); an open-
source collection of software components for simplifying the ex-
ecution of deep models on resource-sensitive platforms. DXTK
contains a number of pre-trained low-resource deep models that
users can quickly adopt and integrate for their particular applica-
tion needs. It also offers a range of runtime options for executing
deep models on range of devices including both Android and Linux
variants. But the heart of DXTK is a series of optimization tech-
niques (viz. weight/sparse factorization, convolution separation,
precision scaling, and parameter cleaning). Each technique offers a
complementary approach to shaping system resource requirements,
and is compatible with deep and convolutional neural networks. We
hope that DXTK proves to be a valuable resource for the commu-
nity, and accelerates the adoption and study of resource-constrained
deep learning.
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1. INTRODUCTION
Increasingly, the state-of-the-art in the modeling of noisy complex
data is shifting to deep learning [11, 19] principles and techniques.
Through a series of innovative deep neural network architectures
and algorithms, domains such as object and face recognition [46,
31], machine translation [20], and speech recognition [27] have
been transformed – with the resulting new models demonstrating

significant improvements in accuracy and robustness. However,
adoption of these methods within mobile and embedded systems
has lagged notably; even though many of these systems require
precise sensor inference capabilities. The core reason for this is
the intrinsic complexity of deep models and the heavy demands
on computational and memory resources that this complexity en-
tails. Deep Neural Networks [28] (DNNs) and Convolutional Neu-
ral Networks [36] (CNNs), for example, routinely are composed of
thousands of interconnected units, and millions of parameters [31,
46]. Consequently, most wearable, mobile and embedded sensor-
based systems today adopt simpler modeling approaches (such as
Decision Trees and Gaussian Mixture Models [14]) that have a
lower resource footprint – even though they are often known to
have inferior performance relative to deep learning alternatives.

In this paper, we present the design, implementation and evalua-
tion of the DeepX toolkit (DXTK) [2]; a collection of open-source
software components that aim to ease the adoption and study of
deep learning algorithms within mobile, wearable and embedded
platforms – particularly with respect to inference-time model per-
formance. The core of DXTK is a series of Model Optimizers each
of which implement various techniques towards reducing the mem-
ory and computational demands of a deep model – typically at the
expense of a small loss in accuracy (tunable by the user). In this
initial release of DXTK there are five optimizers included, specifi-
cally: weight factorization [32], sparse factorization [12], convolu-
tion separation [45, 12], precision scaling and parameter cleaning;
the set of Model Optimizers within DXTK is designed to be ex-
tensible so that new innovations can be incorporated as they are
developed. Similarly, DXTK is also compatible with existing deep
learning frameworks that are used, for example, to train models
with large-scale data using sophisticated deep methods in a rela-
tively user-friendly manner. Currently, DXTK integrates directly
with Torch [8] and adopts the Torch model format. General sup-
port for various deep learning frameworks is an underlying design
assumption and TensorFlow [10] support is expected shortly.

Within DXTK, Model Optimizers are accompanied by a collec-
tion of pre-trained pre-optimized Low-resource Models. These of-
fer users deep models capable of many common sensing tasks, such
as speaker identification or object recognition, that are based on
well-known and state-of-the-art techniques but have already been
optimized through the careful application of DXTK techniques.
Users of DXTK can simply integrate these models into their appli-
cations if they wish to leverage deep learning technology as quickly
as possible. Runtime Support is the final DXTK software com-
ponent; two primary forms of support are offered. First, DXTK
enables Torch to operate as a prototyping-friendly inference en-
gine under both Android (for phone and watch support) and Linux-
based systems (ideal for Internet-of-Things development). Second,
for those platforms where the overhead of Torch is unacceptable,
DXTK includes a thin inference-only C++ runtime. Although only
DNNs are supported as part of this initial release.
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2. BACKGROUND
We begin with a primer on deep learning methods, before describ-
ing challenges in implementing them on constrained devices.

Deep Neural Networks. An architecture of a deep model includes
a series of (often, but not always) fully-connected layers, and within
each layer comprising some number of units (or nodes). Each unit
has a state (an activation) that is dictated by all units in the prior lay-
ers. An example of such a deep model is shown in Figure 1. The
input layer of units (the first layer in the architecture) are set by raw
(or gently normalized) data – for instance, an audio clip to be clas-
sified as a particular type of sound. The output layer of the model
(the final layer of the architecture) determines the category of the
data (assuming a discriminative task is being performed). Such
data categories often correspond to individual units of the output
layer. In-between the input and output layer are what are refereed
to as hidden layers. The role of these layers are to convert the data
initialized input layer into the final activation of a unit within the
output layer (that indicates the category). Adjacent layers within
a DNN are connected via a collection of parameters (specifically,
weights and biases). The activation of one unit is determined by
these parameters and the state of prior layer units; more precisely,
for successive fully connected layers with i and j units there are i
X j weight parameters and k bias parameters. As a result, the total
number of parameters for a typical DNN containing tens of layers
and hundreds of units per layer can easily reach into the millions.

Using a DNN to classify a segment of data (i.e., perform infer-
ence) is done with the feed-forward algorithm. For each segment
of data (be it an audio frame or image) the algorithm is performed
repeatedly, and in isolation. Feed-forward begins at the input layer
and updates the state of each layer iteratively based on the prior
one, depending on the parameter values. The activation state of
each unit within a layer is updated successively until the final unit
within the final layer is reached. At this point the inference class is
usually the output layer unit with the largest activation.

Convolutional Neural Networks. An equally popular, yet alter-
native form, of deep learning is a CNN – an example of which is
shown in Figure 2. Mostly they are used for tasks related to images
where this approach offers often state-of-the-art performance [36] –
however, the usage of CNNs is increasing into other learning tasks.
CNNs contain one or more of the following collection of layer
types: convolutional layers, pooling or sub-sampling layers, and
fully connected layers. Note this final layer type (fully-connected)
are identical to those described above in relation to DNNs). At the
core, CNNs aim to extract a series of representations (i.e., learned
features) from input 2D images. The architecture seeks to con-
vert images to representations of increasingly higher abstraction
towards target learned concepts (such as discriminating between
objects). Accomplishing this is done by initially applying a num-
ber of convolutional filters to an input image to extract local data
properties. Subsequently, min and max pooling is usually applied
to extract summary characteristics from the convolution represen-
tations. This results in the extracted features being invariant to, for
example, translation and undergoing a type of dimensionality re-
duction. Sigmoid non-linearities are often applied as well as biases
added prior to pooling being done. The number of parameters for a
CNN are based on the count and dimension of convolutional filters,
as well as how they are applied to data. Nevertheless, just as in
the case of DNNs the parameter count also can easily run into the
millions.

In fashion very similar to that of DNNs, inference under a CNN
is performed on a single data segment per iteration. Usually input
sensor data are vectorized into a 2D representation (which happens
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Figure 2: Convolutional Neural Network Architecture

to be highly natural for 2D images). Data are feed into convolu-
tional layers at the start of the architecture. These layers provide
a type of pre-proccessing to the data and operate and apply a se-
quence of filters (or patches), the output of which are fed to fully
connected layers at the end of the CNN architecture. Inference is
completed in roughly the same manner previously as detailed.

Challenges on Embedded and Mobile Devices. Commonly used
deep models, such as Inception [44] used in computer vision tasks
like object detection, can take days or even weeks to train on pow-
erful GPU-based desktop machines. For much more constrained
devices like smartphones and embedded platforms, even thought
they only usually need to perform classification with these models,
due to the shear number of layers, units and parameters significant
system resource bottlenecks still surface. There is still much to be
learned about these bottlenecks, but early studies into these issues
[25, 33] observe three key (perhaps unsurprising) forms:

• Memory: The most obvious bottleneck for deep learning is
memory. The models themselves commonly run in the or-
der of hundreds of MBs due to their complex representation.
From a practical point of view, this inflates sensor apps dra-
matically and normally dwarfs application logic. Users are
resistant towards apps that take so long to install and update.
If we turn to runtime requirements, peak memory needs of-
ten will preclude a particular platforms from using a model
even if they have the necessary program storage to hold the
model representation. It is not uncommon for a single model
layer to require tens or hundreds of MBs and this might be
a 90⇥ more than the average layer consumption within the
model. In such cases, manual customization of the model is
necessary before it can execute completely to the final layer.

• Computation: Models like VGG, even when carefully im-
plemented on embedded platforms, have been seen to take
minutes to complete for a single image due to the paging
required – although in most cases this is a secondary effect
of a large memory footprint. Similarly, smartphones despite
having significant computational power present challenges in
executing deep models with latency suitable for user interac-
tion and usually realized with hand-optimized models that
offload computation to the cloud, or at least a GPU. Com-
putation requirements are also sharply shaped by model ar-
chitecture, with some layers like convolutional ones being
much more compute bound than feed-forward layers (that
are more memory-bound). As a result, overlooked changes
in architecture can have a significant runtime impact.



• Energy: Extending largely from computational concerns,
the power-consumption of deep models due to excessive ex-
ecution time for even a single inference can prohibit them
from being used for continuous monitoring fashion although
this is often needed. This better (but more complex) deep
models to be hidden within sensing system processing chains,
only activated when a less resource intensive simpler model
(perhaps supporting a narrower range of categories) detects
a particular certain condition.

It should be noted, this view of deep learning resource issues is
limited by being largely inference-centric. Looking ahead because
of the need to adapt models (for example, to recognize the face
of a user’s child in their personal photos), bottlenecks specific to
types of deep model training on constrained devices are likely to
also emerge. This will bring even an wider more extreme set of
challenges into focus than those described above.

3. DXTK OVERVIEW
The objective of the DeepX toolkit (DXTK) [2] is two-fold. First,
it seeks to facilitate the prototyping of mobile and embedded appli-
cations that use deep models. For this reason it includes, for exam-
ple, pre-built deep models suitable for constrained devices that per-
form typical sensor processing tasks like object recognition. These
models can then be easily executed in one of the runtime support
options offered, such as within an Android development environ-
ment. Second, DXTK supports the investigation of how, in partic-
ular, inference-time resource consumption of deep learning models
and algorithms can be reduced. Helpful in this regard are the a
series of deep model optimization techniques it includes; each of-
fers different approaches for reducing resource usage that can be
extended, or benchmarked against freshly proposed alternatives.

3.1 Architecture
As illustrated in Figure 3, DXTK is comprised by three types of
software components (viz. Low-resource Models, Model Optimiz-
ers, Runtime Support). At this stage, all code is written in Python or
Lua and is assumed to be used in conjunction with the Torch frame-
work [8]. However, DXTK is designed to be modular in a way
that allows for future compatibility with alternative deep learning
frameworks – TensorFlow [10] compatibility is expected shortly.

Low-resource Models. DXTK includes a collection of pre-trained
and pre-resource-optimized models. The initial set of models re-
leased operate either images or audio data, and perform classifi-
cation tasks that include: object recognition, speaker identification
and ambient sound class discrimination (e.g., music, conversation).
For object recognition two popular model architectures are present,
AlexNet [31] and VGG [43]. It is expected these models can be
customized to application requirements (e.g., recognizing a type
of car, place, clothing) through the typical deep learning process
of fine-tuning – simple forms of which DXTK includes within the
Torch environment. Audio models are trained by the authors of
DXTK using publicly available datasets, later in this paper details
of the training and modeling techniques used are given in the Sec-
tion 5. Multiple versions of each model are offered, each with dif-
ferent levels of resource requirements (such as memory constraints)
for use on different platforms. Models are specified within the
Torch model format, but conversion to other frameworks are rel-
atively simple. It is anticipated this collection of models will grow
over time, and include direct contributions from the community.

Model Optimizers. A total of five different Model Optimiz-
ers are included in the initial release of DXTK; namely, weight
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Figure 3: DXTK Architecture.

factorization [32], sparse factorization [12], convolution separa-
tion [45, 12], precision scaling and parameter cleaning – in Sec-
tion 4, we detail each of these optimizers. Each optimizer has the
same aim, to reduce inference-time system resources usage of a
deep model – specifically: execution-time memory consumption,
the storage/memory footprint of the model itself, and the amount
of computation required. Optimizers can be applied to any existing
DNN or CNN model, and produce as an output a new version of
the model that has been manipulated to reduce its resource needs.
Optimizers expect models to be described in a Torch compatible
format, and produce models in this same form. In cases where the
alterations to the model result in an accuracy loss, each optimizer
has parameters that can be tuned (by toolkit users) to control the
amount of this loss. It is anticipated users will experimentally tune
parameters by observing accuracy and general model robustness on
the target data of interest. Similarly, it is expected such tuning will
also be done to determine a model that fits within the constraints of
the particular target platform. Finally, while each technique is sep-
arate and so therefore can be applied in combination with others to
a single model, the use of one may limit the effectiveness of others.

Runtime Support. The primary runtime support available from
DXTK is based on the Torch framework itself. DXTK makes it
simple for Torch to be run directly within Android (for smartphones
and smartwatch scenarios) and Linux environments (mainly for
embedded Internet-of-Things style platforms). It is important to
note the support for these environments is based on a mixture of
existing open-source code (and in the case of Linux, basic cross-
compilation). Therefore, DXTK is acting largely in a role of in-
tegrating these opportunities with other DXTK components, and
so broadening accessibility to these techniques. Support for An-
droid is based on a customizable template Android application that
incorporates Torch for developers. Various template options are
offered to change the Torch and Android integration, for example
one offering directly a command line Torch prompt useful for test-
ing model variations on end platforms. Although using Torch as
an inference engine brings about additional overhead, it also eases
the support for a broad range of deep learning forms (especially
new innovations) as Torch is maintained by a large existing com-
munity. Broadening runtime support is likely to be much simpler
under alternative frameworks like TensorFlow because of its native
support for platforms like Android, and expanding direct support
for processors such as those from Qualcomm, ARM and Intel.

The secondary runtime support present in DXTK is offered for



highly constrained embedded platforms such as the ARM Cortex
M0 (see Section 5 for more). This runtime only offers inference
execution of DNNs (i.e., feed-forward layers only) and is written
in C++ which makes it highly portable. This runtime assumes a
Torch model format. Looking ahead we expect to expand the ca-
pabilities of this runtime to architectures like CNNs, and develop
more sophisticated mangers of memory in particular.

3.2 Usage Models
To further clarify the operation model of DXTK, we now provide
brief descriptions of three representative workflows that are antici-
pated to be popular with users.

Direct Use of Low-resource Models. If one of the Low-resource
Models fits the need of the user directly, integration within an sys-
tem or application under development can be very rapid. The user
will need to select the runtime support option that fits the target
platform and then iteratively test different versions of the Low-
resource Model that are pre-computed for various energy, memory
and computational limits. After the model is found, a user can aug-
ment the runtime with other application specific logic, for example
using language hooks that interact directly with Torch.

Training and Optimizing a Custom Deep Model. Through the
use of a conventional deep learning framework, users are able to
train a deep model just as they would normally. Although DXTK
directly supports Torch model formats, in practice this training can
be done by any framework as conversion into the Torch format is
fairly simple. Once a user has a candidate deep model to use in
a mobile or embedded device they may apply any of the Model
Optimizers (offline) to reduce its resource consumption. This will
typically be done experimentally, with an optimizer being applied
with a certain range of optimizer specific parameters selected. The
adapted model produced by the optimizer can then be inspected by
the user to determine if the accuracy and resource usage are ac-
ceptable. Accuracy can always be assessed on a workstation but
certain resources like energy are most easily tested directly on the
target device. After model performance is satisfactory the appro-
priate DXTK runtime can be adopted and customized, with then
the model put directly onto the device.

Optimizing an Open-source Deep Model. It is very common
for pre-trained deep models and the related code necessary to train
them to be released to the public from research and industry groups.
In such cases users of DXTK can attempt to integrate these into
their system or experiments in a manner very similar to the above
workflow. The key distinction is that rather than design and train
the model themselves with an existing framework, if a pre-trained
model is available they can directly start to apply any DXTK Model
Optimizer. (Although if the model format is not compatible with
Torch some conversion steps will be required).

4. DXTK MODEL OPTIMIZERS
The technical core of DXTK is a collection deep model manipu-
lation techniques. Each Model Optimizer is based either on pre-
viously proposed methods (e.g., [12, 32]) or generally known in
the community. We now detail the Optimizers offered in the first
release of DXTK.

4.1 Weight Factorization.
Weight factorization (WF) operates on a fully connected layer of
DNNs and CNNs. For example, in case of a DNN (see Figure 1)
WF can potentially be applied on the connections between any two
successive layers. Specifically, all connections between layer L
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Original Model

Figure 4: Illustration of the WF technique. Through factorization of the
weight matrix, a new layer results and inserted two prior adjacent layers
of the original model. The net result of this adaptation is that significantly
fewer computations are required at inference time.

(containing m units) and L + 1 (containing n units) are repre-
sented by the matrix W

L, where the ith row of WL contains all
the connection strengths from ith unit in layer L to all units in
L + 1. In case of CNN, WF can be applied on any layers respon-
sible for classification (see Figure 2). WF helps to lower memory
and overall computations of deep models by performing low rank
approximation of the layer weights. As a by product of lesser num-
ber of computations, the overall power requirement to execute the
deep model also decreases. This technique is a simplification of a
method proposed in [32] named Runtime Layer Compression.

Factorization. The key idea in WF is to factorize the weight
matrix W

L for layer L into two components, e.g., U and V , such
that WL ⇡ U ·V , and the overall memory requirement to store the
factorized components is smaller than the original weight matrix
itself. Additionally, when the states of all units in the layer L is
evaluated, the factorized approach needs fewer operations.

We employ the well known Singular Value Decomposition (SVD)
technique to factorize the weight matrix of a fully connected layer.
For instance, the weight matrix WL+1

m⇥n for two adjacent layers (L
and L + 1) with m and n units respectively (under SVD) can be
represented as:

WL+1
m⇥n = Um⇥m ⌃m⇥n Nn⇥n (1)

The weight matrix can be approximated by keeping k biggest sin-
gular values, i.e.,:

ˆWL+1
m⇥n = Um⇥k ⌃k⇥k Nk⇥n (2)

ˆWL+1
m⇥n = Um⇥k Vk⇥n (3)

Architecture Adaptation. Figure 4 summarizes the weight fac-
torization process, which includes an architectural modification.
The weight matrix WL+1

m⇥n can be replaced by the product of Um⇥k

and Vk⇥n , which is achieved by introducing a new layer with
k ⌧ m,n units between layer L and L+ 1. Because L and L+ 1

units are fully connected, the introduction of the new layer allows
the number of pairwise calculations and weight parameters to fall
dramatically, when:

k <
m · n
m+ n

(4)

Prior empirical [26, 49] and theoretical [30] results support the WF
design in two important ways. First, even though the architecture
of the model is changed, the impact on downstream layers, trained
assuming the original architecture, does not typically result in large
increases in error. Second, in fact considerable amounts of com-
pression are possible, if carefully applied to certain layers, before
significant accuracy declines are observed. One reason for this is
that model representations produced by training processes do not
always produce the most compact representation.



4.2 Sparse Factorization
Similarly as WF, sparse factorization (SF) relies on the decomposi-
tion of the layer weight matrix, however, requiring one of the com-
ponent matrices to be sparse1. The main benefits of SF over WF are
reductions in memory demand and computations. This technique
is detailed more completely in [12].

Dictionary Learning. The task of sparse matrix factorization
can be formulated as a dictionary learning problem with a sparsity
penalty (regularization). Here a dictionary B is learned from the
weight matrix W

L of a fully connected layer using an unsuper-
vised algorithm [13]. Sparse coding approximates an input, e.g.,
a column of WL, as a sparse linear combination of basis vectors
from the dictionary B (see [12] for details). Thus, WL

= B · A,
where A is a sparse matrix.

Architecture Adaptation. Once the dictionary B and the sparse
matrix A is obtained2, we can follow the same layer adaptation
procedure employed by the WF. Figure 4 captures the basic ar-
chitectural change, although not the level of sparsity that results.
Note that sparsity translates into missing connections among units.
However, the dictionary size k determines the gain in memory and
computations, and the following condition needs to hold to achieve
computational and memory benefits:

nnz(A) <
n · k
2

, (5)

where, nnz(·) counts the number of non zero elements and n is the
number of units in the layer (L+ 1) [12].

Similarly to WF, the redundancy estimator E can be used to mea-
sure the deviation in estimated weight matrix from the original.

4.3 Convolution Separation
Both WF and SF can reduce the memory requirement of both DNNs
and CNNs, however, factorization of fully connected layer does not
reduce the bottleneck of massive amount of convolutional compu-
tational operations in CNNs. As was the case in the prior technique,
this approach was also proposed in [12] – while a closely related
technique is also proposed in [45].

Separable Filters. Let K 2 RN⇥d⇥d⇥C be the set of N convo-
lutional filters (each with dimension d⇥ d⇥C) specific to a layer.
The output feature map M 2 RN⇥H⇥W is generated for an input
data x 2 RC⇥H⇥W as:

Mj = f

 
X

c

x

c ⇤Kc
j + bj

!
, (6)

where, f(·) is the non-linear function, b is the bias vector for the
layer and c is the index over C input channels. The time complexity
for generating M is O(CNd2HW ).

Here the main goal is to obtain an approximation kernel ˆK, i.e.,
||K � ˆK||22 ⇡ 0 and ˆK can be decomposed into horizontal H 2
RN⇥1⇥d⇥K and vertical V 2 RK⇥d⇥1⇥C filters with lower ranks,
controlled by the parameter K. Under this condition, the overall
convolution can be rewritten as [12]:

Kn ⇤ x ⇡ ˆK ⇤ x =

KX

k=1

Hk
n ⇤
 

CX

c=1

Vc
k ⇤ xc

!
(7)

1Majority of the matrix elements are 0.
2We use the K-SVD algorithm to learn the dictionary. Details of
the dictionary learning algorithm is described in [12].

Architecture Adaptation. H and V can be learned from K using
an approximation algorithm as presented in [45]. The separation
of overall convolutions allows us to convolve the input x with the
vertical filter V to produce an intermediate feature map Z. Next,
the desired output is generated by convolving Z with H. This is
implemented by replacing the original convolution layer with two
successive convolution layers with filters V and H respectively.

4.4 Precision Scaling
Largely motivated by empirical observations, attention is increas-
ing in how deep models can function surprisingly well even when
represented by parameters with less numerical precision [22, 17].
Even with as few as 8-bits deep models for image or audio data
have been observed to maintain relatively high accuracy levels. Ex-
periments involving 16-bit and 8-bit are now becoming common,
and binary types of network architectures are starting to evolve
[18]. Promisingly hardware support to even further take advantage
of these opportunities is increasing such as the Nvidia Tegra X1 [6]
that has, for example, support for more efficient 16-bit operations
within the GPU.

On similar lines, DXTK allows the developers to control the pre-
cision for model parameters, which directly impacts resources like
the memory footprint of a deep model. In the current version of the
toolkit, we offer the most basic forms of precision scaling – devel-
opers can change the model precision from double (64-bit) to float
(32-bit), thereby reducing the model size by half. In the future,
we will add more techniques to control the precision of the model
parameters, including adjusting parameter precision to 16-bit and
8-bit. A number of other extensions of this Optimizer are possible.
For example, quantization is a promising related direction that uses
approaches like clustering or encoding schemes to more efficiently
represent parameter values used within a model. Under one exam-
ple technique of this type, K-means clustering is applied to assign
a fixed-length code to each weight (requiring log2 k bits) allow a
weight matrix to be approximated by only storing k cluster means,
in addition to each cluster index.

4.5 Parameter Cleaning
The deep models produced by frameworks like TensorFlow or Torch
typically produce models that include parameters that are only at
the training phase of the model, but never at inference phases. This
is also true of models that are offered for download based on re-
search. As a result, when using such frameworks or adopting a
recent model published in the literature the number of parameters
of the model is unnecessarily large for only running inference on
and embedded or mobile device.

DXTK offers an Optimizer that performs this conceptually sim-
ple cleaning of unneeded parameters as a simple but useful way
to reduce the memory footprint of deep models. This approach
iterates through each layer of the model and removes parameters
such as gradient weights and biases, which are computed during
the backpropagation phase of model training and are no longer re-
quired at the time of inference. This approach can reduce the mem-
ory footprint of deep models by ⇡ half, without accuracy loss.

5. EXPERIMENTS WITH DXTK
In this section we summarize the performance benefits, that DXTK
brings, by thoroughly evaluating the techniques presented above.
We consider two types of popular models, namely DNNs and CNNs,
and measure compressed model performances for audio and image
recognition tasks on four representative mobile and wearable plat-
forms as shown in Figure 5: (i) Qualcomm Snapdragon 400, (ii)
Nvidia Tegra K1, (iii) ARM Cortex M3 and (iv) ARM Cortex M0.



Figure 5: Hardware platforms used to evaluate DXTK. From left: Qualcomm Snapdragon 400, Nvidia Tegra K1, ARM Cortex M3 and ARM Cortex M0

5.1 Representative Deep Models
In this work we consider two DNN models, which are trained to
identify the speaker from audio measurements and to understand
the surrounding ambient environment. We next consider three CNN
models, significantly rich in parameters than the DNNs, that iden-
tify object from a color image, predicts the gender and the age of
a person from an input image. In the following we will briefly de-
scribe the models, and a summary of these models is presented in
Table 1.

SpeakerID. The first DNN model is trained on an audio speaker
verification dataset [48], which contains speech recordings from
106 individuals (45 male and 61 female). Audio measurements
were recorded with 16 KHz sampling frequency. In order to main-
tain a near equal class distribution, we limit the maximum du-
ration of audio recording to 15 minutes per user. SpeakerID is
a DNN comprising of two hidden layers, each containing 1000

units and operates on aggregated mel-frequency cepstral coeffi-
cients (MFCC) extracted from the audio measurements. Input to
the DNN is constructed by first extracting 13-dimensional MFCC
features from 25 milli second measurement windows, followed by
aggregating the features over a 5 second period. The aggregation
generates an input feature dimension of 650. The trained DNN has
over 1.7 million parameters.

Ambient. The second DNN model is trained on an audio scene
dataset [1] that contains over 1500 minutes of audio recordings.
All audio measurements were captured using Galaxy S3 smart-
phones and the dataset contains 19 different ambient scenes includ-
ing, ‘plane’, ‘busy street’, ‘bus’, ‘cafe’, ‘student hall’ and ‘restau-
rant’. During recording a sampling frequency of 22.05 KHz is used
and several 30 seconds long audio files from each ambient environ-
ment are made available. In line with the SpeakerID model, we
use the same MFCC-based feature extraction pipeline from the au-
dio data and train a DNN with two hidden layers, each containing
1000 units.

AlexNet. We next consider a popular CNN model to show the ben-
efits of using DXTK on a relatively recent computationally heavy
image recognition task. AlexNet is an object recognition model [31],
which supports more than 1000 object classes (e.g., dog, car). Com-
pared to the DNN models described above, AlexNet has over 60.9
million tunable parameters. In 2012, it offered state-of-the-art lev-
els of accuracy for well-known datasets like ImageNet.

AgeNet. Contrary to object detection task, AgeNet [37] is a CNN
that tries to predict the age of a person from an input image. We
use AgeNet in our experiments, which is composed of three convo-
lution layers and two fully connected layers. The model has been
trained using around 20K images, containing roughly equal pro-
portion of male and female images.

GenderNet. Lastly, we consider another CNN model, Gender-
Net [37], that tries to recognize the sex of a person from an input
image. GenderNet follows the same architecture as AgeNet (except
the output layer) and uses the same dataset for training.

Name Type Parameters Architecture
SpeakerID DNN 1.8M fc:3?

Ambient DNN 1.7M fc:3?

AlexNet CNN 60.9M c:5ı; p:3‡; fc:3?

AgeNet CNN 11.4M c:3ı; p:3‡; fc:3?

GenderNet CNN 11.4M c:3ı; p:3‡; fc:3?

ıconvolution layers; ‡pooling layers; ?fully connected layers

Table 1: Representative Deep Models

5.2 Hardware Platforms
We report performances, viz. inference time and memory require-
ment of the deep models, while running inferences on four repre-
sentative hardware platforms with various capabilities. Below we
briefly describe the hardware platforms studied in this work. Note
that, the toolkit support generic techniques, which bring inference
time benefits (e.g., time and memory) to any underlying hardware
platforms.

Figure 7: Inference times of various models under 64-bit (double) and 32-
bit (float) precision on Qualcomm Snapdragon 400.

Qualcomm Snapdragon 400. Qualcomm Snapdragon 400 SoC [7]
is widely found in many existing smartwatches, such as the LG G
smartwatch R [4]. Internally, the Snapdragon has a quad-core ARM
Cortex CPU and 1 GB of memory, though when shipped in smart-
watches the RAM is often reduced to 512 MB. Figure 2 (left) shows
the Snapdragon 400 development board used in our experiments.

Nvidia Tegra K1. Contrary to the other mobile and IoT hard-
ware, Tegra K1 SoC [5] provides extreme GPU performance. It
contains Kepler 192-core GPU, which is coupled with a 2.3 GHz
4-core Cortex CPU and an additional low-power 5th core (LPC)
that is designed for energy efficiency. The K1 SoC is used in IoT
devices such as June IoT Oven [3] and IoT-enabled cars. Mobile
examples of the Tegra include the Nexus 9 along with the develop-
ment smartphone in Google’s Project Tango. The CPU can access
over 1GB of RAM, largest of all processors profiled.

ARM Cortex M0 and M3. The ARM Cortex-M series are ex-
amples of ultra-low power wearable platforms. The smallest of
them all is Cortex M0, which consumes 12.5 µW/MHz and sup-
port a memory size of 8 KB. The M3 variant of the cortex operates
at 96 MHz and supports 32 KB of memory. These low-end micro-
controllers often have limited memory management capabilities. In
our experiments we could only use around 5.2 KB memory on Cor-
tex M0 and around 28 KB memory on Cortex M3. Availability of



Figure 6: Memory footprint of all five models under various techniques supported by DXTK.

Platform RAM CPU GPU
Cores Speed Cores Speed

Snapdragon 1 GB 4 1.2 GHz 6 450 MHz
Tegra 1 GB 4 2.3 GHz 192 950 MHz
Cortex M0 8 KB 1 48 MHz � �
Cortex M3 32 KB 1 96 MHz � �

Table 2: Summary of the Hardware Platforms

a small memory requires frequent paging, while executing a large
model.

5.3 Performance Results
In this section we present performance benefits of DXTK, allevi-
ating some of the bottlenecks in executing deep models on repre-
sentative embedded platforms. We mainly focus on the memory
requirement, model execution time and energy consumption.

Memory. We first demonstrate the effect of various optimization
techniques on the runtime memory requirements of all five deep
models. Figure 6 shows the memory footprint of the models in
their original form (64 bit), after precision scaling (32 bit), in a
stripped-down form (i.e., after parameter cleaning), then two forms
of weight factorizations (WF and SF) when applied to the stripped-
down model. Lastly, for CNNs (top row in Figure 6), we present
the model sizes after performing convolution separation in addition
to SF.

Clearly, we observe a drastic reduction in the memory footprint
of the models when various optimization techniques supported by
DXTK are applied to them - for example, the original AlexNet
model size reduces from 930.3 MB to 31.9 MB (29x reduction)
on applying the various optimisations, thereby making it feasible
to run it on memory constrained hardware platforms. Similarly, the
SpeakerID DNN model size reduces from 26.9MB to just 0.4MB
(67x reduction) after optimization, which makes it possible to exe-
cute on processors as limited as Cortex M0.

Model Runtime and Energy Consumption. We now demon-
strate the effect of the various optimization techniques on the run-
times of the models. Figure 7 shows the effect of precision scaling
(64-bit to 32-bit) on all five models, when they are executed on the
Snapdragon 400. We observe that changing the model precision
alone can reduce the execution time significantly. For example, for

SpeakerID a gain of 1.5⇥ is observed and the reduction was as high
as 4.6⇥ for AlexNet (CNN).

Next, in Figure 8, we show the energy and latency of the 32-
bit precision DNN models under various optimisation conditions
on the four hardware platforms. We observe drastic reductions in
runtimes of both models when SVD (WF) and sparse factorization
(SF) are applied – for example, the fully optimized Ambient 32-bit
DNN model runs 9.7⇥ faster (on Cortex M0) and 4.9⇥ faster (on
SnapDragon 400) than its unmodified version. Similar reductions
in the energy consumed by these models are observed across all
hardware platforms – for example, the fully optimized SpeakerID
model consumes 9⇥ less energy on Cortex M0 and 2⇥ less energy
on SnapDragon 400.

Similarly, Figure 9 shows the energy and latency profile for the
three CNN models only for Snapdragon 400 and Tegra K1, as the
Cortex M0 and M3 processors are not capable of running the CNNs
in reasonable time. In the case of CNN models, we also apply the
convolution separation technique, which further reduces the overall
inference time. For example, we observe that the fully optimized
AlexNet model consumes 2.3⇥ less energy and runs 2.3⇥ faster
than unmodified AlexNet on Nvidia Tegra K1.

Inference Accuracy. DXTK enables developers to reduce the
memory footprint of a deep model significantly on embedded de-
vices, without compromizing significantly on the inference accu-
racy. More specifically, DXTK seeks to constrain accuracy loss to
5% or less (compared to the original model before any changes are
made). Table 3 illustrates the relative accuracy loss for SpeakerID
(DNN) and AlexNet (CNN) under different memory reduction con-
ditions. For example, in the case of AlexNet, the model size can be
reduced by more than 75% with just a 4.9% accuracy loss. DXTK
also has the ability to adjust the model size dynamically based on
the memory availability and as such, can be deployed to new hard-
ware platforms with different memory sizes without requiring sys-
tem changes.

Relative Accuracy Loss (%) Memory Reduction (%)
SpeakerID 3.2 (93.7 to 90.5) 92.8 (28 MB to 2 MB)
AlexNet 4.9 (77.5 to 72.6) 75.5 (233 MB to 57 MB)

Table 3: Model size reduction relative to accuracy loss, when applying the
estimator threshold.



Figure 8: Model runtime and energy consumption when running two DNNs on ARM Cortex M0, Cortex M3, SnapDragon 400 and Tegra K1

Figure 9: Model runtime and energy consumption when running three CNNs on SnapDragon 400 and Tegra K1

6. DISCUSSION
We now provide a discussion on the current state and future ex-
tendability of the DeepX toolkit. We also highlight the alternate
viewpoint in the industry on bringing deep learning onto the em-
bedded devices.

First Release of DXTK. It is important to stress that the toolkit
version presented in this paper is a first version wherein it supports
deep learning models developed in Torch and a limited number of
optimizations. We believe that these initial techniques provide a
good starting point for users to prototype and deploy deep inference
applications on embedded devices, or to test the performance of
their inference models directly on the device.

We are actively working on adding several extensions to the toolkit.
We have already developed better optimization techniques for deep
models that we will be releasing in the future versions. For in-
stance, one key optimization to be added in the future versions is
the ability to decompose the monolithic deep model network ar-
chitecture into unit-blocks of various types, that are then more ef-

ficiently executed by heterogeneous local device processors (e.g.,
GPUs, CPUs). Further, as more open source deep learning frame-
works (e.g. TensorFlow) become popular, DXTK can be extended
to support the models developed in them. The modular nature of
DXTK ensures that it can support a variety of deep learning frame-
works and optimisation techniques in the future – and its users can
choose their preferred framework and techniques.

Dedicated Hardware for Deep Learning. Recently, there has
been a push to develop dedicated hardware to run deep learning al-
gorithms [16, 51]. However often these prototypes perform a spe-
cific type of deep learning (such as a CNN) or only certain types of
deep model layer types (e.g., a convolution), with remaining layers
executed as normal. Moreover dedicated hardware are expensive
and not as widely deployed in modern smartphones and embedded
devices. As such, we argue that for devices that do not run on dedi-
cated deep learning hardware, it become essential to apply software
optimisation techniques, some of which are currently incorporated
in DXTK and others that will be added in the future. Even on
the dedicated hardware, DXTK provide ways for effective model



compression and in future will support intelligent model decom-
position and parallel computation across processors – thus adding
to the acceleration and performance improvements provided by the
dedicated hardware. In summary, we believe that a combination of
better hardware and extendable software toolkits like DXTK could
be the way forward for mobile deep learning.

7. RELATED WORK
We now overview work closely related to DXTK, this includes re-
cent advancements in embedded deep learning and efforts to opti-
mize sensing algorithms for constrained devices.

Mobile and Embedded Applications of Deep Learning. Only
recently has the exploration into deep learning methods for mo-
bile and embedded scenarios begun (e.g., [34, 23]). Deep learn-
ing models have been trained for a range of inference tasks on
mobile devices, such as speaker identification [35], ambient scene
analysis [35], emotion classification [24], garbage detection in im-
ages [38], and activity recognition [50]. Google has enabled forms
of its deep learning translation models to run directly on a phone [9],
and deep learning has already revolutionised mobile speech recog-
nition in commercial systems [27]. But these few examples rely on
manual per-model optimizations, provided by teams of people with
high-levels of expertise in deep learning and mobile devices. In
contrast, DXTK aims to allow any developer to use deep learning
methods and automatically lowers resource usage to levels that are
feasible for mobile and embedded devices.

Further, deep learning frameworks such as Torch and Tensor-
Flow are being ported for mobile operating systems such as An-
droid, iOS and Linux. This has allowed developers to use off-the-
shelf models trained in these frameworks and execute them on mo-
bile and embedded platforms. The various optimizations in DXTK
are currently supported for the deep models trained using Torch,
and in future we plan to add support for more deep learning frame-
works including TensorFlow.

Optimization Techniques for Embedded Devices. The resource
constrained nature of embedded devices has motivated extensive
research on developing techniques to run context-sensing and be-
havior modeling algorithms under constraints of memory and pro-
cessing power. Approaches include the development of sensing
algorithm optimizations such as short-circuiting sequences of pro-
cessing or identifying efficient sampling rates and duty cycles for
sensors and algorithm components like [29, 40, 41]. Other works
such as [39] have looked at combining such optimizations with
careful usage of energy efficient hardware.

Similar research is also increasing for lowering resource con-
sumption in deep models – for example, the model compression
research in the machine learning community focuses on altering
the underlying model at training time in order to scale it to the
target hardware. For example, [26] actually removes nodes and
reshapes layers within the model while [21, 42] performs types of
quantization of parameters within layers. On the contrary, we de-
signed DXTK towards minimizing the modifications made to the
model and so adopt approaches that insert new layers designed to
optimize performance.

Researchers have also demonstrated one-off optimizations such
as [35] that scaled down DNNs to run directly on a DSP only, of-
fering energy efficiency. Others have proposed smaller footprint
deep models for tasks such as keyword spotting or speaker verifi-
cation – these models are much smaller than normal and so can run
on phones [15, 47]. DXTK instead targets full-scale deep models
that otherwise only appear in cloud systems, and enable them to be
executed on embedded devices.

Hardware specialization is another promising direction for deep
learning optimization with many studies already underway [16, 51].
However often these prototypes perform a specific type of deep
learning (such as a CNN) or only certain types of deep model layer
types (e.g., a convolution), with remaining layers executed as nor-
mal. Furthermore, we also expect DXTK will leverage specialist
hardware as they become more available.

8. CONCLUSION
In this work, we have presented the design and evaluation of the
DeepX toolkit (DXTK) – a collection of tools designed to assist
the exploration and adoption of deep learning methods on embed-
ded and mobile devices. Although DXTK includes a number of
auxiliary components such as ready-to-use deep models prepared
for low-resource environments, the technical focus of the toolkit
is a series of Model Optimizers that modify deep models to re-
duce their usage of resources such as memory or computation. In
our initial release described here, these techniques include: matrix
and sparse factorization, convolution separation, precision scaling
and parameter cleaning. To demonstrate the value this toolkit, we
report example performance experiments of DXTK across a vari-
ety of deep learning models including DNNs and CNNs. Results
show that DXTK can significantly reduce the memory footprint of
a deep model with little loss in inference accuracy. This is signif-
icant for enabling their execution on resource-constrained embed-
ded devices, and providing a much higher inference accuracy than
the conventional shallow models currently in use. We hope that the
techniques and supporting tools embodied by DXTK will help ac-
celerate the adoption of deep learning within constrained devices,
and then enable further research in the area.
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