
82	 PERVASIVE computing� Published by the IEEE CS n 1536-1268/17/$33.00 © 2017 IEEE

Smartphones
Editor: Nayeem Islam n Qualcomm n nayeem.islam@gmail.com

Squeezing Deep Learning
into Mobile and Embedded
Devices
Nicholas D. Lane, University College London and Nokia Bell Labs
Sourav Bhattacharya and Akhil Mathur, Nokia Bell Labs
Petko Georgiev, Google DeepMind
Claudio Forlivesi and Fahim Kawsar, Nokia Bell Labs

I n a relatively short time, deep learn-
ing principles and algorithms have

transformed how the world processes,
models, and interprets data.1 For dis-
criminative learning tasks routinely
integrated into mobile and embedded
systems—such as recognizing spoken
words, objects, and faces—deep net-
works have been the state of the art for
many years. Looking ahead to future
device-based applications of learning,
deep models are proving pivotal in the
development of control algorithms
for autonomous cars and drones (for
example, for deep reinforcement learn-
ing). Deep models are also expanding
into the area of core system issues—
improving, for example, methods for
encryption and compression.2

The blending of learning algorithms
and mobile computing taking place
today is only the beginning. We believe,
in particular, that deep learning will
play a prominent role in the evolution of
smart devices (such as phones, watches,
and embedded sensors) moving for-
ward. It is therefore of paramount
importance that we advance our under-
standing of how to simply and effi-
ciently integrate current—and future—
deep learning breakthroughs within
constrained computing platforms
(for more information, see the “Deep
Learning under Constrained Devices”

sidebar). This, along with continued
research into the use of deep neural
networks that support the diverse infer-
ence needs of sensor systems, will help
produce radical improvements in how
on-device context modeling and activ-
ity recognition is performed.

The emergence of mobile and embed-
ded forms of deep learning has been
slowed by the extreme resource over-
head that it can easily introduce. Deep
networks often contain hundreds of
layers of interconnected nodes, and
performing a single classification from
a frame of sensor data can require com-
putations over potentially hundreds
of millions of parameters. Model rep-
resentations and inference algorithms
originally conceived for deep networks
can easily overwhelm the resources of
constrained platforms. In response to
this resource barrier, the past 18 months
have seen a surge in the investigation
of resource-efficient deep learning for
mobile and embedded platforms.

Promising early results are appear-
ing across many domains, including
hardware,3,4 systems,5,6 and learning
algorithms.7,8 Likely to further acceler-
ate progress is the rate at which existing
commercially supported deep learning
tools, libraries, and frameworks have
begun to address the specific needs of
constrained devices (examples include

TensorFlow, Caffe2, SNPE, Compute
Library from Google, Facebook, Qual-
comm, and ARM). These tools are
starting to offer building blocks that
enable fundamental research in this
area by simplifying key steps such as
runtime support on Android devices,
processor-optimized low/mix preci-
sion matrix multiplication, or access to
often unavailable heterogeneous device
processors such as digital signal proces-
sors (DSPs) or GPUs.

In this short article, we provide an
overview of the progress we have made
toward overcoming a variety of core
challenges facing deep learning for
mobile and embedded devices, while
also attempting to connect our findings
to those of the wider community in the
area. This discussion is largely focused
on improvements seen within on-device
execution of deep networks, which
assumes the models are trained off-
device. This is because execution (that
is, inference) is the critical first step
toward deep learning support, and it’s
the focus of almost all existing work,
although exploration of on-device
training has begun. Finally, given space
constraints, we only superficially touch
upon the ways in which deep learning
is changing the face of activity and con-
text recognition,9 again limiting our
focus to on-device examples.

JULY–SEPTEMBER 2017	 PERVASIVE computing� 83

DEEP LEARNING UNDER CONSTRAINED DEVICES

The deep learning revolution has been powered by major ad-
vances in training algorithms, leaps in the availability of comput-
ing resources (primarily GPUs), and of course increased access
to large-scale data. But at the core of any on-device, use of deep
learning remains a neural architecture that must be efficiently
executed.

PRIMER ON DEEP LEARNING
INFERENCE AND ARCHITECTURES
Although a variety of deep model architectures have been de-
veloped, here we briefly describe two popular networks (shown
in Figure A): deep neural networks (DNNs) and convolutional
neural networks (CNNs). The role of training algorithms is to set
the parameters of these neural architectures based on available
data. This process is almost always assumed to occur off-device,
and so the device itself is concerned with efficient inference.

Under a DNN, inference follows a feed-forward approach that
operates on input data segments in isolation. The algorithm starts
at the input layer and moves layer-wise sequentially while updat-
ing the activation states of all nodes within each layer. The process
finishes at the output layer when all nodes in the layer have been
updated. Finally, the inferred class is identified as the class cor-
responding to the output layer node with the greatest activation
value. DNNs are often used in familiar mobile sensing tasks, such
as spoken keyword spotting or identifying a speaker, but they’re
also use in extracting high-level human behaviors and contexts
from inertial, location,1 and (again) audio sensors.

Primarily used for vision and image-related tasks, CNNs are an
alternative formulation of deep learning models. A CNN model
contains one or more convolutional layers, pooling or subsampling
layers, and fully connected layers. The objective of these layers is to
extract simple representations from the input data and convert the
representations into a more complex representation at much coarser
resolutions within the subsequent layers. Lastly, fully connected lay-
ers often are used to help a CNN make predictions. CNNs can rec-
ognize a place type (such as a kitchen), accurately estimate age and
gender, or more broadly recognize daily events from even noisy
complex images, even those from wearable cameras.2 Certain de-
signs of CNN architectures like AlexNet or VGG3 can be specialized
to support many distinct tasks, and so their particular performance
on constrained devices can become particularly important.

SYSTEM RESOURCE BOTTLENECKS
Model training is not the only computationally challenging
process in deep learning. Even executing the straightforward
inferencing step using a parameter-heavy model on a resource-
limited device must overcome several challenges, including

limited memory, limited computational power, and an unusual-
ly large inference time.4,5 For example, deep models often have
millions of parameters, and their storage on limited memory
devices quickly becomes infeasible. Under low memory condi-
tions, neural networks are often represented with low-precision
parameters (8-bit or 16-bit) or by quantizing the weights of
the architecture. Remarkably, even when heavily compressed
with such methods, deep architectures can retain much of their
accuracy. However, due to runtime memory limits, performing
inference might still require frequent paging operations.

Inference time is also impacted by the overall number of
computations. The availability of multiple cores and low-power
processors on mobile platforms can be used to parallelize partial
state updates of nodes to improve the inference time. More-
over, inferences often come with real-time requirements. Local
execution of the memory- and computation-optimized models
can potentially meet the requirements, overcoming intermittent
connectivity problems prevalent in cloud-based systems.

Also, when running deep models continuously on embedded
or wearable devices, high energy efficiency is crucial for maintain-
ing a prolonged battery life. The energy consumption, among
many things, mainly depends on the amount of computations,
the use of low-power processors—such as digital signal processors
(DSPs)—and the number of cache accesses. Thus, energy opti-
mization requires a detailed understanding of the deep-model-
execution pipeline on heterogeneous hardware platforms.

REFERENCES

	 1.	 J. Zhang et al. “DNN-Based Prediction Model for Spatio-Temporal
Data,” Proc. 24th ACM SIGSPATIAL Int’l Conf. Advances in Geographic
Information Systems (GIS), 2016, article no. 92.

	 2.	D. Castro et al., “Predicting Daily Activities from Egocentric
Images Using Deep Learning,” Proc. 2015 ACM Int’l Symp. Wearable
Computers, 2015, pp. 75–82.

	 3.	 K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” Proc. Int’l Conf. Learning
Representations (ICLR), 2015; https://arxiv.org/pdf/1409.1556.pdf.

	 4.	N.D. Lane et al., “An Early Resource Characterization of Deep
Learning on Wearables, Smartphones, and Internet-of-Things
Devices,” Proc. 2015 Int’l Workshop on Internet of Things towards
Applications (IoT-App), 2015, pp. 7–12.

	 5.	 J. Albericio et al., “Cnvlutin: Ineffectual-Neuron-Free Deep Neural
Network Computing,” Proc. 43rd Int’l Symp. Computer Architecture
(ISCA), 2016, pp. 1–13; https://doi.org/10.1109/ISCA.2016.11.

Hidden layers

(1) (2)

Input layer
Output layer

Input Fully connected
layers

Pooling
layer

Convolution
layer

Output
layer

Convolution
layer

Figure A. Two popular neural network architectures: (1) deep neural networks (DNNs) and (2) convolutional neural
networks (CNNs).

84	 PERVASIVE computing� www.computer.org/pervasive

SMARTPHONES

SMARTPHONES

EARLY SMARTPHONE
SENSING RESULTS
In late 2014, we began our explora-
tion into deep learning, starting with
smartphones. These early investigations
were motivated by two questions. First,
could typical mobile and embedded
sensing tasks, such as activity recogni-
tion and context sensing, be improved
by the same deep learning approaches
that were revolutionizing so many
other inference domains? Second, how
feasible was it to use these notoriously
resource-heavy modeling techniques for
user devices such as smartphones?

Fast forward to today, and deep
networks for activity recognition—
and smartphone sensing in general—
have become much more mainstream.
Researchers are developing powerful
methods to train various deep architec-
tures, raising the level of accuracy for
models of human behavior.9 Similarly,
the ability to push neural networks
into phone DSPs for low-power opera-
tion, a core innovation in our 2014
work (discussed next),10 is an upcom-
ing feature of Google’s TensorFlow in
partnership with Qualcomm.11

Deep Networks for Activity
Recognition and Audio Sensing
We devised early deep learning solutions
for well-known smartphone recogni-
tion tasks to quantify the benefits for
on-device sensing.10,12 A unique aspect
of our approach was our focus on build-
ing constrained deep networks suitable
for mobile and embedded devices. We
wanted to know if deep learning was a
viable and transformative replacement
for the existing classifiers of mobile con-
text and activities, grounded in shallow
learning techniques. A core finding of
our work was that for a range of sens-
ing tasks, generic (nontask specific)
deep networks could outperform state-
of-the-art hand-selected features and
shallow models—even when the deep
networks were constrained to a size that
made them more resource efficient than
shallow alternatives.10

We then applied these findings to the
audio domain and developed Deep-
Ear,12 a system for training and execut-
ing small-footprint deep neural net-
works (DNNs)—specifically, Restricted
Boltzmann Machines (RBMs)—which
were able to classify many audio con-

texts despite being a modest size of
2.3 million parameters each. As Table
1 summarizes, we stress-tested Deep-
Ear, as well as a range of task-specific
mobile audio classifiers, and on average,
the accuracy was more than 30 percent
higher for each task using DeepEar,
even though each DNN was designed
to execute not only within the CPU but
even in the phone’s DSP, a critical factor
we explain next.

Low-Power Deep Networks
via Heterogeneous Compute
Just as GPUs are a primary enabler for
scaling up the training of larger and
larger deep networks, we have found
that non-CPU heterogeneous proces-
sors (such as DSPs) play a key role in
scaling down deep networks for con-
strained devices. The DSPs in phones,
for example, are sufficiently energy-effi-
cient to compute on sensor data almost
continuously while still supporting a
device battery life beyond 24 hours.

Motivated by such efficiencies, we exe-
cuted our proposed activity and audio
targeting deep networks within the con-
straints of phone DSPs of the time—in

TABLE 1
A comparison of accuracy between our low-resource generic-task deep classifiers and existing hand-designed and task-specific

(shallow) classifiers from the literature for various mobile sensing tasks. Note, reported microphone accuracy is lower than might be
expected (for example, speaker identification), because experiments were conducted under severe acoustic conditions. (Experimental

setup and classifier specifications appear elsewhere.12,13 For each shallow classifier, we indicate the original venue of publication.)

Device type Sensor Sensing task
Task-specific shallow
classifier (%)

Generic-task deep
classifier (%)

Smartphone Microphone Ambient scene
detection

81 (baseline from MobiSys 2009) 86

Smartphone Microphone Stress detection 62 (UbiComp 2012) 82

Smartphone Microphone Emotion recognition 72 (UbiComp 2010) 81

Smartphone Microphone Speaker identification 36 (Pervasive 2011) 57

Smartwatch Accelerometer, gyroscope Gesture recognition 68 (Activity Recognition in Perva-
sive Intelligent Environments 2010)

72

Smartwatch Accelerometer, gyroscope Physical activity
recognition

82 (SenSys 2010) 93

Smartwatch Light sensor, magnetic sen-
sor, microphone, tempera-
ture sensor, proximity sensor

Location detection
(indoor/outdoor)

87 (SenSys 2014) 94

JULY–SEPTEMBER 2017	 PERVASIVE computing� 85

SMARTPHONES

particular, within memory footprints
of just 8 Mbytes (using the Hexagon
DSP of the Qualcomm Snapdragon
800).10,12 DeepEar, under the Hexagon
DSP, could run for 24 hours while using
just 6 percent of a typical phone battery
life with interleaved DNNs supporting
four different audio tasks. In our follow-
up system, DeepX,5 we showed that by
dividing models across a wide range of
commodity phone processors (CPUs,
DSPs, and GPUs), such efficiency gains
were possible for not just small-scale
DNNs but also other architectures,
including even large image-based deep
networks (such as the CNN AlexNet
with 61 million parameters).

Our algorithms in DeepX allowed
neural networks to be partitioned
across different processor types within
a local device using a runtime form of
model compression that used singular
value decomposition (SVD) to cope
with processor constraints and mini-
mize inter-processor overhead. Our
smartphone prototype (on the Snap-
dragon 800) showed that this let various
well-known deep models execute with
efficiencies far in excess of baselines
based on single processors or model
compression alone (our prototype was
up to seven times more energy efficient,
for approximately a five percent loss in
accuracy).

VGG AND MORE
ON A SMARTWATCH
As techniques for deep learning on
phones have matured, we have started
studying how these issues manifest under
smartwatches. The capabilities (com-
pute and memory) of watches, coarsely
speaking, lag phones often by one or two
device generations; a typical Android
smartwatch has not only 512 Mbytes of
RAM and a multicore CPU but also a
GPU and DSP. Watches are also natural
for performing continuous and diverse
behavior and context inferences—unlike
phones, which can spend most of the day
in pockets and bags. These two factors
make it both conceivable and warranted
for watches to join phones in performing
nontrivial deep learning.

Transforming Watches
from Smart to Deep
As in DeepEar,12 our first proposed
watch,13 deep learning models were
applicable to a range of common watch
sensing tasks (shown in Table 1). Just
as the DeepEar experiments had done
for the smartphone audio domain, we
demonstrated that typical inertial and
wearable sensor data (such as acceler-
ometer, barometer, and magnetometer
data), fed into DNNs suitable in size for
watches (around 200,000 parameters),
could outperform existing task-agnostic
classifiers from the literature.

This result further added to the
understanding of feature representa-
tion learning by showing that these
DNN models, produced by a single (off-
watch) training framework, could out-
perform custom per-task combinations
of hand-selected features and shallow
models. On average, tasks were more
than 7 percent more accurate com-
pared to the best performing manually
constructed classifier, while exerting a
reasonable overhead.13 For example, a
commodity LG smartwatch could run
one such RBM at 3 Hz and still main-
tain a 32-hour battery life.

Leveraging Layer
Separation and Compression
Most examples of deep models—
designed to process images, for exam-
ple—dwarf the DNNs just described.
The well-known VGG architecture can
perform object recognition (and many
other visual tasks) but at a cost of 138
million parameters or more. To prove
the potential of smartwatches to sup-
port such demanding deep models, we
showed that the VGG can be run locally
on commodity smartwatches with a
loss of approximately 3 percent accu-
racy (a tuneable parameter).7 This was
achieved primarily through a method
applicable to any CNN, which reduces
the computational bottleneck of apply-
ing thousands of convolutional kernels
through what we call kernel separation.
This technique replaces the 2D kernels
defined during training with a pair of
1D vertical and horizontal kernels that,

when used together, produce a result
that approximates that of the original
2D version.

We coupled this optimization with
the earlier described SVD-based
model-compression technique for the
fully connected layers at the end of the
CNN, which simplifies the description
of how nodes are connected and allows
a further reduction in the number of
parameters. We studied this approach
on commodity watches under a vari-
ety of deep models, with VGG being
the most resource intensive.7 VGG, for
example, executes in just under 1.2 sec-
onds (a 2.7 times gain over conventional
implementations) on LG smartwatches.
These results, under some of the heavi-
est examples of deep models, pair with
our low-resource DNN-based findings
to show how deep solutions can not
only improve over shallow methods but
also be adopted in watches.

OVERCOMING SEVERE
EMBEDDED CONSTRAINTS
As we have discussed, resource con-
straints present nontrivial barriers for
deep learning on phones and watches.
However, within embedded processors,
these issues are magnified to extreme
levels. Smartphones can address multi-
ple Gbytes of RAM, but embedded pro-
cessors, such as the ARM Cortex series,
typically are limited to just hundreds or
even tens of Kbytes. Similar resource
differentials also extend into energy and
compute domains. For these reasons,
unlike the proliferation of phone-based
deep learning in the last 18 months, few
examples of deep learning under embed-
ded constraints currently exist.

Toward filling this void, promising
results are being seen in the form of
binary deep architectures that are com-
posed solely of 1-bit weights14 instead of
32-bit or 16-bit parameters. Such archi-
tectures offer incredibly small models
and remove the need for expensive mul-
tiplication operations, but their ability
to perform well with real-world prob-
lems is still an open question. Solutions
more closely tied to hardware will also
undoubtedly play a key role in the area,

86	 PERVASIVE computing� www.computer.org/pervasive

SMARTPHONES

SMARTPHONES

such as the unique co-design opportu-
nities for embedded-scale deep models
that are built for field-programmable
gate arrays processors,3 or even emerg-
ing small form-factor deep learning
accelerators (see, for example, https://
uploads.movidius.com/1463156689-
2016-04-29_VPU_ProductBrief.pdf).

Sparse Compression for
Embedded Processors
Our contribution to the embedded area
has been to devise a new form of model
compression7 that enables conventional
DNNs to both fit and execute within the
embedded processors, such as the ARM
Cortex M3, and even the ARM Cortex
M0! With this technique, fully connected
layers of the DNN are represented using
a sparse dictionary. As shown in Figure 1,
dense matrices that capture the pair-wise
dependencies of nodes (that is, weight
matrices) are replaced with a code-book
and sparse matrix that, together, closely
approximate the dense original. We dis-
covered a sparse-coding formulation that
lets this approximation (and therefore the
model accuracy) remain high. The dic-
tionary is trained from the initial model
representation, and a large saving in com-
putation and memory results because
nonzero elements can be ignored.

Compute savings under our approach
are even further magnified, because,
at execution, high-efficiency sparse
matrix multiplication algorithms can
be adopted in favor of conventional
varieties that assume dense matrices.

Although this method is only applicable
to fully connected layers, it addresses
the central embedded bottleneck of
model size and still remains broadly
useful, because the operations opti-
mized are a key component to alterna-
tives such as recurrent and convolu-
tional architectures.

Experiences on the ARM Cortex
To measure the gains of our sparse-
coding method for embedded proces-
sors, we tested DNNs for two audio
tasks: speaker recognition and classifi-
cation of the acoustic environments. We
adopted an existing DNN architecture
and training methods designed for low-
resource platforms while still maximiz-
ing audio task robustness. Our findings
showed, for example, that at the expense
of 2 percent in accuracy, model com-
pression by sparse coding can reduce
these already optimized models by a
factor of approximately 17 times for
both tasks. In the case of speaker recog-
nition, DNNs executed within our run-
time that could leverage the sparsity of
model representation showed a tenfold
improvement in execution time within
both ARM Cortex processors.

These gains make it feasible to run
what are normally smartphone-class
audio models in severely constrained
processors. However, work remains to
make deep models of this scale com-
pletely practical, because they still can’t
execute these models in real time—
execution is still in the order of tens of

seconds even to process a single five-
second audio clip.

LOCAL EXECUTION
OF MULTIPLE DEEP MODELS
Virtually all of the progress made thus
far in mobile and embedded deep learn-
ing assumes that a single model executes
on a constrained device. This is natural,
because even a single deep model can
present considerable technical challenges.
However, most devices and applications
will need to execute multiple models
as part of their daily operations. For
example, a wearable camera likely won’t
just recognize objects; it will also identify
people and track facial expressions.

Between-model optimization oppor-
tunities exist most often when the col-
lection of models perform related tasks
(like image models), because each is
trained independently, which lets natu-
ral redundancies emerge. For example,
models that perform face recognition
and object recognition will both learn
layers that perform a type of edge detec-
tion during training, even though this
operation could, in theory, be shared.
Optimization opportunities such as this
present an important class of perfor-
mance improvements that has received
little attention thus far.

Multiple Model Inference Pipeline
As a first step in addressing this issue, we
designed an inference pipeline for wear-
ables that targets the local execution of
multiple image-based CNNs.15 This

≈
·

m × n m × k k × n

Zero elements
(majority)

Non-zero
elements

Weight matrix (dense) Activation matrix (sparse)Code Book (dense)

Figure 1. Illustration of our sparse-coding approach that factorizes dense matrices typically necessary to describe the connectivity
between layers. A single dense matrix is approximated with two matrices; one is the weight code-book and the other is the sparse
layer connectivity descriptor. We note a similar factorization is used in DeepX (not shown), but sparse coding is replaced by a
light-weight singular value decomposition (SVD)-based method.

JULY–SEPTEMBER 2017	 PERVASIVE computing� 87

SMARTPHONES

pipeline builds on a single fundamen-
tal optimization insight—namely, that
CNNs are comprised of both compu-
tation-heavy convolutional layers and
memory-heavy fully connected layers.
Although convolutional layers only
lightly tax the memory resources, they
are computationally demanding. In
contrast, fully connected layers place
the exact opposite resource demands.

Due to these orthogonal resource
demands of memory and compute, it’s
possible to schedule and batch layers
together from multiple models to better
maximize the resources of constrained
devices and avoid bottlenecks that pre-
vent multiple deep models from being
executed. Our layer-centric execution
framework for the inference stage of
multiple CNNs focuses on optimal
scheduling and batching decisions for
device performance with a global view
of all models, while still adhering to the
layer dependencies of the neural net-
work architecture.

Beyond this core idea, the execution
framework incorporates memory cach-
ing of frequently used fully connected
layers, selective use of SVD-based com-
pression (described earlier), and logic
that identifies the visual similarity in
consecutive images to avoid unneces-
sary operations. Although designed for
CNNs, the underlying concepts of this
pipeline can generalize to other deep
architectures.

DeepEye Wearable Camera
To study this multiple model pipeline,
we integrated it within DeepEye—a
prototype wearable camera based on a
commodity processor (the Qualcomm
Snapdragon 410) that offers execu-
tion of multiple CNN models without
offloading computation to the cloud.
DeepEye supports two use cases: life-
logging and vision assistance. Lifelog-
ging seeks to log various everyday user
experiences, with DeepEye realizing
this through CNNs that can recognize
objects, places, and faces and infer
important image regions and how
memorable an image is for the user.
In contrast, vision assistance aims to

help users who have low-vision capa-
bilities by applying the same deep mod-
els that detect faces or objects, along
with additional CNNs that infer age,
gender, and emotions.

We compared the performance of
DeepEye against the serial execution
and single-model optimization alter-
natives. Experiments revealed that the
latency for executing the multimodel
inference pipeline is 10.10 seconds
and 8.2 seconds for lifelogging and
vision assistance, respectively (gains
of 1.7 and 1.88 times over baselines,
respectively).15 These gains translate
into a battery life of nearly 20 hours
(1.4 times gain over the baseline),
assuming images are captured every
30 seconds.

D eep learning on constrained
devices, such as phones, watches,

and even embedded sensors, is already
well on its way to becoming main-
stream. This is being enabled by a
growing community of academic
and industrial researchers who are
bridging the worlds of machine learn-
ing, mobile systems, and hardware
architecture.

Looking toward what is next, in the
short term, we’re likely to see continued
leaps in activity and context-recogni-
tion accuracy, as insights from deep
learning continue to propagate. We’re
also likely to see not just inference but
also training being performed more
routinely on devices. More funda-
mentally, applications of deep learn-
ing today are largely limited to clas-
sification tasks, yet the broader trend
is for these algorithms to perform a
wider range of computation. Within
constrained devices, the potential
definitely exists for them to begin to
perform control and decision tasks,
as well as more application logic,
where their ability to learn and adapt
dynamically to complex conditions
might overcome some of the more
brittle characteristics of sensory sys-
tem behavior that have proven diffi-
cult to overcome.

6 PERVASIVE computing www.computer.org/pervasive

From the editor in ChieF

From the editor in ChieF

for the job market and considers the
question of whether, in the long run,
IoT will be used as a source of good
or evil.

In our Smartphones department,
Nayeem Islam, Saumitra Das, and Yin
Chen describe an approach to protect-
ing mobile devices from malicious
events using machine-learning tech-
niques. They propose detecting mali-
cious apps using both static analysis
and runtime behavior analysis. The
runtime system is trained offline using
a binary classifier and then performs
online detection of both benign and
malicious behavior based on this train-
ing. The authors make a very good
point that, in the future, cyber security
will be performed by machine-learn-
ing attackers and machine-learning
defenders! The question will be whose
AI will be better.

In our Human Augmentation
department, Kai Kunze, Kouta Min-
amizawa, Stephan Lukosch, Masa-
hiko Inami, and Jun Rekimoto discuss
their efforts to create superhuman
sports and sporting events. They
explore different approaches to this
idea, including enhancing human capa-
bilities through the use of technology,
exploring ways in which technology
can make the sports more enjoyable
to play and watch, and improving
training methods to help humans
become better within the limitations
of the human body. They have even
created an entirely new sport that
uses augmented reality and gesture
recognition—and it’s commercially
available in Japan! Finally, they have
founded a superhuman sports society
in Japan and are looking at hosting
superhuman sporting events in the
coming years. For all of you sports
fans, this is an area to watch as this
field of superhuman sports takes off!
(Also, look for our special issue on
Human Augmentation next year; see
the Call for Papers at www.computer.
org/pervasive-computing/2017/02/16/
augmenting-humans-call-for-papers.)

Another area to watch is in the medi-
cal field. Our Pervasive Health depart-

ment presents an effort to establish a
National Center for Excellence in the
US focused on collecting mobile sen-
sor data and enabling researchers to
turn that data into valuable knowledge
that can improve the lives of those liv-
ing with chronic health conditions.
The effort is truly cross-disciplinary,
with medical and behavioral experts
working with computer scientists and
electrical engineers. This will be an
exciting space to watch in the coming
years, as I expect that the collected
data will enable new results to reach
patients more quickly. My hope is that
this effort can be expanded over time
to include data and researchers from
around the world!

The effort to standardize the collec-
tion of medical data is necessary

and admirable. I wish more people
would take this approach. We need
similar infrastructures for smart cities
data and beyond. We could take this as
a lesson for our power infrastructure
as well!

Maria r. Ebling is a director at the IBM

T.J. Watson Research Center. She manages a

team building systems capable of supporting

a Smarter Planet while not forgetting about

the people who use such systems. Ebling

received her PhD in computer science from

Carnegie Mellon University. She’s a member

of the IBM academy of Technology, a distin-

guished member of the aCM, and a senior

member of IEEE. Contact her at ebling@

us.ibm.com.

how to
reach us

writers
For detailed information on submit-
ting articles, write for our Editorial
Guidelines (pervasive@computer.org)
or access www.computer.org/
pervasive/author.htm.

Letters to the Editor
Send letters to
 Brian Brannon, Lead Editor
 IEEE Pervasive Computing
 10662 Los Vaqueros Circle
 Los alamitos, Ca 90720
 pervasive@computer.org

Please provide an email address or day-
time phone number with your letter.

on the web
access www.computer.org/
pervasive for information about
IEEE Pervasive Computing.

Subscription Change
of address
Send change-of-address requests
for magazine subscriptions to
address.change@ieee.org. Be sure to
specify IEEE Pervasive Computing.

Membership Change
of address
Send change-of-address requests
for the membership directory to
directory.updates@computer.org.

Missing or damaged Copies
If you are missing an issue or you
received a damaged copy, contact
membership@computer.org.

reprints of articles
For price information or to order
reprints, send email to pervasive@
computer.org or fax +1 714 821 4010.

reprint Permission
To obtain permission to reprint an
article, contact William Hagen, IEEE
Copyrights and Trademarks Manager,
at copyrights@ieee.org.

MOBILE AND UBIQUITOUS SYSTEMS

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org.

88	 PERVASIVE computing� www.computer.org/pervasive

SMARTPHONES

SMARTPHONES

Nicholas D. Lane is a senior

lecturer (associate professor)

at University College London

and a principal scientist at

Nokia Bell Labs. Contact him

at niclane@acm.org.

Sourav Bhattacharya is a

research scientist at Nokia Bell

Labs. Contact him at sourav.

bhattacharya@nokia-bell-

labs.com.

Akhil Mathur is a research

scientist at Nokia Bell

Labs. Contact him at akhil.

mathur@nokia-bell-labs.com.

Petko Georgiev is a

research engineer at Google

DeepMind. Contact him at

pig20@cam.ac.uk.

Claudio Forlivesi is a

research engineer at Nokia

Bell Labs. Contact him at clau-

dio.forlivesi@nokia-bell-labs.

com.

Fahim Kawsar leads the

Internet of Things research at

Nokia Bell Labs. Contact him

at fahim.kawsar@gmail.com.

REFERENCES

	 1.	 I. Goodfellow, Y. Bengio, and A. Cour-
ville, Deep Learning, MIT Press, 2016.

	 2.	 G. Toderici et al., “Variable Rate Image
Compression with Recurrent Neural
Networks,” Proc. Int’l Conf. Learning
Representations (ICLR), 2016; https://
arxiv.org/abs/1511.06085.

	 3.	 S. Han et al., “ESE: Efficient Speech
Recognition Engine for Sparse LSTM
on FPGA,” Proc. 2017 ACM/SIGDA
Int’l Symp. Field-Programmable Gate
Arrays (FPGA), 2017, pp. 75–84.

	 4.	 R. LiKamWa et al., “RedEye: Analog
ConvNet Image Sensor Architecture
for Continuous Mobile Vision,” Proc.
Int’l Conf. ACM/IEEE 43rd Ann. Int’l
Symp. Computer Architecture (ISCA),
2016, pp. 255–266.

	 5.	 N. Lane et al., “DeepX: A Software
Accelerator for Low-Power Deep
Learning Inference on Mobile Devices,”
Proc. 15th Int’l Conf. Information
Processing in Sensor Networks (IPSN),
2016, article no. 23.

	 6.	 S. Han et al., “Deep Compression:
Compressing Deep Neural Networks
with Pruning, Trained Quantization
and Huffman Coding,” Proc. Int’l Conf.
Learning Representations (ICLR), 2016;
https://arxiv.org/pdf/1510.00149.pdf.

	 7.	 S. Bhattacharya and N.D. Lane,
“Sparsifying Deep Learning Layers
for Constrained Resource Inference on
Wearables,” Proc. 14th ACM Conf.
Embedded Network Sensor Systems
(SenSys), 2016, pp. 176–189.

	 8.	 G. Huang et al., “Densely Connected
Convolutional Networks,” to appear in
Proc. 13th IEEE Conf. Computer Vision
and Pattern Recognition (CVPR), 2017.

	 9.	 N. Hammerla, S. Halloran, and T. Ploetz,
“Deep, Convolutional, and Recurrent
Models for Human Activity Recognition
Using Wearables,” Proc. Int’l Joint Conf.
Artificial Intelligence (IJCAI), 2016;
https://arxiv.org/abs/1604.08880.

	10.	 N.D. Lane and P. Georgiev, “Can Deep
Learning Revolutionize Mobile Sens-
ing?” Proc. 16th Int’l Workshop Mobile
Computing Systems and Applications,
(HotMobile), 2015, pp. 117–122.

	11.	 Qualcomm, “TensorFlow Machine
Learning Now Optimized for the Snap-
dragon 835 and Hexagon 682 DSP,”
9 Jan. 2017; www.qualcomm.com/
news/snapdragon/2017/01/09/tensor-
flow-machine-learning-now-optimized-
snapdragon-835-and-hexagon-682.

	12.	 N.D. Lane, P. Georgiev, and L. Qendro,
“DeepEar: Robust Smartphone Audio
Sensing in Unconstrained Acoustic
Environments Using Deep Learning,”
Proc. 2015 ACM Int’l Joint Conf.

Pervasive and Ubiquitous Computing
(UbiComp), 2015, pp. 283–294.

	13.	 S. Bhattacharya and N.D. Lane, “From
Smart to Deep: Robust Activity Rec-
ognition on Smartwatches Using Deep
Learning,” Proc. Workshop on Sensing
Systems and Applications Using Wrist
Worn Smart Devices (WristSense),
2016; http://ieeexplore.ieee.org/
document/7457169.

	14.	 B. McDanel, S. Teerapittayanon, and
H.T. Kung, “Embedded Binarized
Neural Networks,” Proc. Int’l Conf.
Embedded Wireless Systems and Net-
works (EWSN), 2017; www.eecs.har-
vard.edu/,htk/publication/2017-ewsn-
mcdanel-teerapittayanon-kung.pdf.

	15.	 A. Mathur et al., “DeepEye: Resource
Efficient Local Execution of Multiple
Deep Vision Models Using Wearable
Commodity Hardware,” to appear in
Proc. 15th Int’l Conf. Mobile Systems,
Applications, and Services (MobiSys),
2017.

IEEE Computer Society
Publications Office

10662 Los Vaqueros Circle
Los Alamitos, CA 90720

STAFF

Lead Editor
Brian Brannon

bbrannon@computer.org

Content Editor
Shani Murray

Manager, Peer Review & Periodical Admin
Hilda Carman

Publications Coordinator
pervasive@computer.org

Contributors
Dale Strok and
Teri Sullivan

Director, Products & Services
Evan Butterfield

Senior Manager, Editorial Services
Robin Baldwin

Senior Business Development Manager
Sandra Brown

Digital Marketing Manager
Marian Anderson

manderson@computer.org

IEEE Pervasive Computing (ISSN 1536-1268) is
published quarterly by the IEEE Computer Society. IEEE
Headquarters, Three Park Ave., 17th Floor, New York,
NY 10016-5997; IEEE Computer Society Publications
Office, 10662 Los Vaqueros Circle, PO Box 3014, Los
Alamitos, CA 90720-1314, phone +1 714 821 8380;
IEEE Computer Society Headquarters, 2001 L St.,
Ste. 700, Washington, DC 20036. Subscribe to IEEE
Pervasive Computing by visiting www.computer.org/
pervasive.

Postmaster: Send undelivered copies and address
changes to IEEE Pervasive Computing, Membership
Processing Dept., IEEE Service Center, 445 Hoes
Lane, Piscataway, NJ 08854-4141. Periodicals
postage paid at New York, NY, and at additional mailing
offices. Canadian GST #125634188. Canada Post
Publications Mail Agreement Number 40013885.
Return undeliverable Canadian addresses to PO Box
122, Niagara Falls, ON L2E 6S8. Printed in the USA.

IEEE prohibits discrimination, harassment and
bullying: For more information, visit www.ieee.org/
web/aboutus/whatis/policies/p9-26.html.

