“Prottoy”: A Context Aware Application Framework

Fahim Kawsar, Kaori Fujinami, and Tatsuo Nakajima

Department of Information and Computer Science, Waseda University, Japan

{fahim, fujinami, tatsuo}@dcl.info.waseda.ac.jp

ABSTRACT

This paper presents a hypothetical framework concept
(“Prottoy”) focusing on generalizing the interactions of
context aware applications with underlying smart
environment. The paper also focuses on the issues related
to generalization considered in “Prottoy”.

Keywords
Context Awareness, Generalization

INTRODUCTION

Heterogeneity is one of the main characteristics of
Ubiquitous Computing Environments. One of the major
challenges of ubicomp applications is to provide solution
that meets this challenge with a satisfactory level. This
leads to the application developer to deal with numerous
devices with numerous varying properties and features like
accuracy, precision, location, position etc. We believe the
future environment will be aware of its operating context
and will be augmented with many sentient objects for ease
of our daily life. For application development encountering
these smart environment, populated with numerous varying
artifacts we need a software infrastructure that generalizes
these sentient artifacts access to some extend and provides a
generic interface for seamless development of application in
context aware environment.

We are investigating this generalization notion, to what
level generalization can be provided in context aware
environment and identifying where is the boundary, and
based on our findings we are working on the development
of a software infrastructure “Prottoy”. This paper presents
the hypothetical concept of the initial prototype of the
framework and our findings so far.

RELATED WORK

Currently there exist a number of context aware application
frameworks in the literature. The Sentient Computing
Project [1] utilizes Active Bat location system to provide
architectural base for indoor application. HP Cool Town [2]
encapsulates the world by providing web presence of place,
people and thing and allows interaction with web presence
of entities primarily exploiting RF technology. EasyLiving
[3] focuses on an architecture that supports coherent user
experience as users interact with variety of devices in a
smart environment. Open Agent architecture [4] is an agent-
based system, which exploits a centralized black board to
support contextual behavior. Schilits System Architecture
[5] deals with context awareness by Device Agents that
maintain status and capabilities of devices, User Agents
that maintain user preferences and Active Maps that
maintain the location information of devices and users.
Context Toolkit [6] focuses on component abstraction by
providing notion of Context Widget and Context
Aggregator for sensor devices and entities with multiple

contextual information. Discoverer manages these
components and additionally there is a Context Interpreter
component that performs the task of context interpretation.

However, none of these frameworks focuses on achieving
truly generalization. Many of them have some interesting
features that “Prottoy” exploits in its architecture. The
following table presents a comparison of feature supports of
some of these and proposed architectures.

CS: Context Specification SEP: Separation of Concerns
TDC: Transparent Distributed Communication IN: Interpretation
CA: Constant Availability ST: Storage RD: Resource Discovery

GEN: Context Generalization SEC: Security Concerns

P= Partial Support V= Full Support X=No Support

System Cs SEP | TDC IN CA | ST | RD | GEN | SEC
Open Agent P v v 4 X X X X X
Architecture
Easy Living P v v P X X P X X

Schililt's System P P P X v X P X X
Context Toolkit v v v 4 v v v X X
Prottoy v V V X V v V v v

Table 1: Comparison of Feature Support

PROPOSED FRAMEWORK DESIGN

We believe the term generalization is very hard to achieve
in ubiquitous environment. As a consequence, rather than
proposing a concrete infrastructure and building application
on top of it, we are building the infrastructure in an
iterative manner based on our experiences and findings on
the development of applications with varying user
requirement in varying environment. The initial prototype
of our framework composed of the following components:

* Resource manager: Keeps track of all the resources

* Widget Wrapper: Encapsulates hardwired widgets and
devices and control access to these widgets. We call
sensor augmented everyday artifacts and similar service
providers as hardwired widget. Context Toolkit use
similar component notion as Context Widget

e Context Integrator: Integrates multiple contexts

* Virtual Widget: Generalizes Access Interface for the
widget wrappers

* Context Analyzer: Analyzes the acquired context
* Context Storage: Stores Context for future retrieval

* Preference Component: Manages user preferences and
privacy.

There is no context interpreter in our framework. Since
providing generalization is the primary concerns of this
framework, the task of context interpretation has been
omitted as context interpretation is application dependent

APP
Actuator LIC
Context Storage ATI
Preference Component oN
LA
Context Analyzer YE
3 3 -
[Virtual Widget |
x 3
v
RM
EA ‘ Context Infegrator (Optional) ‘
SN N
oA >
UG b v ¢ - v
RE Widget Widget Widget
Wrapper Wrapper Wrapper
CR PP PP P
E
- - Virtual Sensor
(Sensor/Devices) (Sensor/Devices)

Fig 1: “Prottoy” Framework Design

and cannot be generalized in broad sense. We expect
application developer to provide the application logic at the
application layer, using the context analyzer that offers the
contextual information either by analyzing after retrieving
from virtual widget or predicting by utilizing context
storage. The underlying widgets join the environment
dynamically and their properties and features are
dynamically binded by the resource manager, which later
exploited by virtual widget. We separate the application
layer from the sentient environment by providing the
virtual widget notion. This encapsulates the low level
sensors augmented artifacts and provides application a
generic interface to interact with them. For application
development using Prottoy, developers need not to interact
with low level sensor augmented devices. For using any
artifacts the developer has to create an instance of generic
Virtual Widget like

VirtualWidget sentientObj = new

VirtualWidget (Context,Location,Accuracy,CommOpt)

And later use its interfaces to manipulate the low level

artifacts in the same manner regardless of their varying

properties and features like
objValue=sentientObj.getValue();

Obviously we are working to provide interfaces for all sort
of property query and registration support during dynamic
binding and later retrieval by application in a generalized
way. We hope to provide more detail implementation
notion in larger version of the paper.

DEMO APPLICATION

We have developed a demo simple media level application
“Smart Assistant” using “Prottoy” architecture consisting
of multiple sentient artifacts namely Sentient Chair,
Sentient Dish Tray and Sentient Lamp. Sentient Chair is
aware of its state of usage, whereas Sentient Dish Tray
knows what is put on it, and their interaction history,
finally Sentient Lamp can identify the presence of user and
can automatically be turned on/off based on light level and
user presence. Combining the information retrieved from
these artifacts, the application can monitor user activity and
based on its analysis it suggest user for refreshment, asks
user about refreshment and can control workspace’s
lighting. Current implementation can talk to user and can
make few gestures on the display to get user attention. We
have found that application development is fairly easy with
“Prottoy” for interacting with such environment as
application developer can focus concretely on the

application logic considering each artifact as generic object
having same interfaces and the framework handles the rest.

Smart Assistant Application
& &

LI | LI L

B =Y B |

Fig 2: Application’s interaction with “Prottoy”

FINDINGS AND FUTURE WORK

Sentient devices exhibit varying properties like owner,
accuracy, precision, location, position etc. As a whole it is
important to identify these device properties for interacting
with them in advance, our current implementation provides
very thin interface for such property registration and
acquisition. Additionally we have to provide both
publishing and subscription mechanism for state
acquisition along with polling mechanism. Another
important issue is, how artifacts should join the
environment, should they register themselves to a global
resource manager or they themselves act as a local resource
manager? Also we need to provide suitable procedure for
controlling artifact access and user level preference
management. We are working on these issues to identify
what may be the best answers to these questions to support
generalization in context aware environment and hope to
incorporate them in “Prottoy” accordingly.

CONCLUSION

“Prottoy” concentrates on generalizing the context aware
environment for application development. It promises to be
a strong software base as we hope to provide the necessary
features to achieve the highest level of generalization
possible.

REFERENCES
1. A. Harter at el. The anatomy of a context-aware
application. In Mobile Computing and Networking

2. Caswell at el. Creating Web representations for Places
Proceedings of the 2nd International Symposium on
Handheld and Ubiquitous Computing

3. Brumitt. at el EasyLiving: Technologies for Intelligent
Environments. [In the Proceedings of the 2nd
International Symposium on Handheld and Ubiquitous
Computing (HUC2K),

4. Cohen at el An Open Agent Architecture. In the
Proceedings of the AAAI Spring Symposium Series on
Software Agents

5. Schilit, Bill N. System architecture for context-aware
mobile computing. PhD dissertation.

6. A. Dey at el A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware
applications. Human-Computer Interaction

