
S3PR: Secure Serverless Search Protocols for RFID

Sheikh I. Ahamed1, Farzana Rahman1, Endadul Hoque1, Fahim Kawsar2, and Tatsuo Nakajima2
1Ubicomp lab, MSCS Dept., Marquette University, USA
2Dept. of Computer Science, Waseda University, Japan

iq@mscs.mu.edu, {bondhons084, endadulhoque }@yahoo.com
{fahim,tatsuo}@dcl.info.waseda.ac.jp

Abstract

For RFID tags to proliferate in our day to day life,
they will have to offer practical, low cost and secured
mechanisms for tag authentication which has been in
the midst of researcher’s interest for almost a decade.
One extension of RFID authentication is RFID tag
searching, which has not been given much attention so
far. But we firmly believe that in near future tag
searching will be a significant issue. In this paper we
propose a lightweight and serverless RFID tag
searching protocol. This protocol can search a
particular tag efficiently without server’s intervention.
Furthermore they are secured against major security
threats.

Keywords: RFID security, serverless search protocol

1. Introduction

RFID systems (referring to Radio Frequency
IDentification) embrace one important development
track in the framework of ubiquitous or pervasive
computing. It is an automatic identification system,
which relies on storing and remotely retrieving data on
objects by using RFID tags. Tags equipped within
objects have unique identification information and is
applicable in various fields such as supply chain
management, employee identification, product
maintenance etc.

In all such practical implementations, often a reader
needs to determine whether a particular tag exists
within a group of tags. This is referred to as RFID
searching. In fact RFID searching is an extension of
RFID authentication. By authenticating every tag
within a group, we can find out the desired tag. But
this is very inefficient. Tag searching with the help of
central database will not be a challenging issue. But
without the help of server, the reader has to search a
tag entirely by itself. This is a critical task because it is
vulnerable to privacy and security threats [3]. For

example, through the broadcast of a search query, a
reader in a warehouse wants to search for a tag which
belongs to a precious object. Now if the tag exists, it
will reply and an adversary will become sure that a
valuable object exists around him. Such security
threats are very common while searching. So
introducing prevailing, secure and practical RFID
searching is one of the major goals of researchers now
a day.

So far serverless searching is discussed only in [5].
In serverless system, reader has to search, authenticate
as well as provide security without server’s
intervention. This departure from server based system
will also reduce cost for RFID system deployment in
many areas where tag searching is done frequently like
supply chain management and E-passport.

In this paper, we tried to find solutions to the
following questions: a) how readers can search a
particular tag without the help of server? b) how a tag
identifies that the communicating reader is legitimate?
Here, we propose a low cost, secured, serverless search
protocol that provides solutions to the preceding
questions. And all these characteristics are ensured
without a back end server which makes our proposal
suitable for various application areas.

1.1 Our major contribution

I. In this paper we are proposing serverless, forward
secure, anonymous searching protocols for RFID tags.

II. We have considered all the major attacks and
our search protocols are secure against those attacks.
We considered security of both tags and readers as
both can be attacked by adversaries

III. In this paper, we discussed some real life
application challenges and their solutions using our
proposed serverless search protocols.

The remainder of the paper is organized as follows.
The next section presents related work. Some major
security requirements for RFID search protocols are
reflected in section 3. Section 4.1 provides some

preliminaries for the rest of the paper. Section 4.2
provides search protocols and their security analysis is
discussed in section 4.3. Some real life challenges and
solutions are discussed in section 5. And finally in
section 6 some concluding remarks are reported.

2. Related works

The assortment of research literature on RFID
searching is inadequate although it is a major issue in
its real life implementation. We stated in section 1 that
RFID searching is an extension of RFID
authentication. So we will go through some relevant
literatures on RFID authentication. But we will mainly
concentrate on the single serverless searching protocols
proposed so far [5].

RFID systems are severely vulnerable to many
security and privacy threats. That is why numbers of
techniques have been proposed for ensuring RFID
security and the assortment of authentication protocols
is quite extensive [3]. Most of the authentication
protocols proposed so far is backed by central
database. One such famous authentication protocol is
YA-TRAP [6] which is not secured against DOS
attack. Another hash chain based RFID identification
protocol is RIPP-FS [2], which shares a private
symmetric key with server. Another famous
lightweight authentication protocol is OSK [4], which
suffers from the problem of desynchronization. In [1],
Avoine and Oechslin modified OSK which removed
the scalability problem. Serverless authentication
protocols are proposed for the first time in [5]. In this
paper, Chiu et al. proposed a challenge response based
mutual authentication protocol. But the reader has to
do lot of computation to find out ݅݀ of the required
tag. And their protocol 2 is not purely and strongly
anonymous.

Serverless RFID searching protocols were also
proposed in [5] for the first time. According to this
protocol, a reader wishes to find out whether a specific
tag is within its vicinity by broadcasting
݄ሺ݂ሺݎ௜, ௝ሻ||݊௥ሻݐ ْ ݅ ௝݀ , ݊௥ and ݎ௜ . Based on this
search query, only the intended tag, if exists, reply with
its encrypted ݅݀. Other tags within the reader’s vicinity
reply a random number based on certain probability.
Tags authenticate the reader based on the search query
and reader authenticates tags based on the reply
“string”. Both valid query and valid replies are
generated by legitimate parties.

3. Security requirements

A number of research literatures has dealt with
several privacy and security issues of RFID. Some of
which are discussed in section 2. RFID searching

should also be secured because an adversary may want
to find out whether precious objects exist by querying
tags. So we point out that the following security goals
must be guaranteed by our protocols: protection against
tracking, eavesdropping and cloning.

4. Search protocols

In practical implementation of RFID, a reader often

wants to find out whether a particular tag exists around
him within a group of tags. One solution can be to
perform authentication protocol for each of the tags of
that group. But this is an inefficient approach as the
number of tags within a system is likely to be huge. So
another solution for RFID searching can be: reader will
search for a tag and only that particular tag, if it exists,
will reply in return. So the objective of secure RFID
searching should be: the reader will search a specific
RFID tag which he is authorized to access. And tags
will reply with valid answers only if the reader is
legitimate.

In this paper, we present different search protocols.
According to the protocols, tag identifier is not passed
to the reader in response to a reader’s query. Whereas
the tag sends certifying information to the reader in
such a way that only the authorized reader is able to
find out whether this is the desired tag. In this way, the
reader can become sure about the existence of the tag
that he is searching for.

4.1. Notation and assumption

We refer an RFID reader denoted as ܴ. Each ܴ has

a unique identifier ݎ and a contact list ࣦ . We will
describe the contents of ࣦ a little later. ܴ obtains ݎ and
ࣦ from a trusted center, ܶܥ, after authenticating itself.
The ܶܥ is a trusted party who deploys all the RFID
tags and authorizes any RFID reader. For the sake of
simplicity we assume that ܴ and ܶܥ communicate
through a secure channel.

According to our proposal, Each RFID tag ܶ
contains a unique value ݅݀, a unique secret ݐ in its
nonvolatile memory. All readers and tags also have
knowledge of a pseudorandom number generator ࣪ሺ. ሻ
which takes a ݀݁݁ݏ as an argument and outputs a
pseudorandom number according to its distribution.
After generating a pseudorandom number, ࣪ሺ. ሻ makes
use of a function ࣧሺ. ሻ that generates next ݀݁݁ݏ of the
pseudorandom number generator. For each authorized
tag, the current seed is stored in the reader in its
nonvolatile memory. And in case of tag, a current ݀݁݁ݏ
is stored for the authenticated reader in its nonvolatile
memory. The initial ݀݁݁ݏ is computed by ܶܥ and
stored in the tag and the reader by ܶܥ. The ݀݁݁ݏ stored

in both the reader and tag, is defined in the following
manner:

௜݀݁݁ݏ
଴ ൌ ݂ሺݎ , ሻݐ ൌ ݄ሺݎ צ ሻݐ

௜݀݁݁ݏ
௞ାଵ ൌ ࣧ൫݀݁݁ݏ௜

௞൯
where, ݄ሺ. ሻ is a one way hash function and ݅

represents ݅௧௛ tag or reader. Superscript ݇ is used to
represent the ݀݁݁ݏ after generating ሺ݇ െ 1ሻ௦௧
pseudorandom number from the distribution of
pseudorandom number generator. ݀݁݁ݏ௜

௞ is used to
generate ݇௧௛ number according to its distribution.
From now on, we will refer to ݇ as the step ݇. In fact,
both the ݀݁݁ݏs in tag and reader become same after
each authentication and searching.

Subscripts are used to describe a particular ܴ or ܶ
and their respective variables. Thus a particular RFID
reader ݅ will be ܴ௜, with an identifier ݎ௜ and contact list
ࣦ௜. A tag ݆ is ௝ܶ and has a secret ݐ௝. The contact list ࣦ
contains information about the RFID tags which a
particular ܴ has access to. ࣦ has a list of all ݀݁݁ݏ଴ ൌ
݂ሺݎ, ,݅ has authorized ܴ to access. So reader ܥܶ ሻ thatݐ
ܴ௜ authorized to access tags ଵܶ,൉ ൉ ൉, ௡ܶ will have ࣦ௜
after authenticating itself to ܶܥ where,

 ࣦ௜ ൌ

ە
ۖ
۔

ۖ
ۓ ଵ݀݁݁ݏ

଴: ݅݀ଵ
ଶ݀݁݁ݏ

଴ ׷ ݅݀ଶ
.
.

௡݀݁݁ݏ
଴ ׷ ݅݀௡
 ۙ

ۖ
ۘ

ۖ
ۗ

Note that ܴ௜ does not know any of the tags secret ݐ.
It only knows the outcome of the function ݂ሺݎ, ሻ asݐ
 cannot be ܥܶ ଴. We assume that the݀݁݁ݏ
compromised, and that all readers once authenticated
by the ܶܥ are trusted. We denote an adversary as ߷ .

௜݀݁݁ݏ
௞ and ݁݁ݏ ௝݀

௞ represents current ݀݁݁ݏ of
pseudo random number distribution of ܴ௜ and ௝ܶ
respectively, where superscript ݇ bears aforementioned
meaning. ௝݊

௞ is a pseudorandom number generated by
݅௧௛ reader for the ݆௧௛ tag using ݁݁ݏ ௝݀

௞ at step ݇.
Similarly, ݊௜

௞ is another pseudorandom number
generated by ݆௧௛ tag for the ݅௧௛ reader using ݀݁݁ݏ௜

௞ at
step ݇.

We can assume ࣧሺ. ሻ as an irreversible one way
hash function. Therefore a ݀݁݁ݏ can’t be linked to the
previous ݀݁݁ݏ. Although we haven’t explicitly shown
the use of ࣧሺ. ሻ by ࣪ሺ. ሻ in the protocols, after
generating a new pseudorandom number ࣪ሺ. ሻ executes
ࣧሺ. ሻ to update the ݀݁݁ݏ which will be stored in a
nonvolatile memory of reader or tag. For example, ௝ܶ
generates a pseudorandom number ݊௜

௞ for ܴ௜ using
௜݀݁݁ݏ

௞ stored in ௝ܶand at the same time next seed
௜݀݁݁ݏ

௞ାଵ is also generated. Therefore ࣪ሺ. ሻ performs
like:

Figure 1. Seed refreshing and pseudorandom
 number generation mechanism.

Correspondingly, in case of a reader ܴ௜, ࣪ሺ. ሻ

performs in the same way by replacing ݅ with ݆.
Whenever the ݀݁݁ݏ needs to be stored in nonvolatile
memory it is explicitly mentioned in the protocols. For
example, ݁݁ݏ ௝݀ ൌ ݁݁ݏ ௝݀

௞ represents that ݁݁ݏ ௝݀
௞ is

stored in ݁݁ݏ ௝݀ along with ݅ ௝݀ in contact list, ࣦ of
reader.

4.2. Protocols

Suppose, a reader ܴ௜ is searching for a tag which we
are referring to as ௗܶ௘௦௜௥௘ௗ. One way of searching may
be according to Search Protocol 1. Here ܴ௜ broadcasts
its ݎ௜ wishing to find ௗܶ௘௦௜௥௘ௗ. Before getting reply
from the tags, ܴ௜ computes next random number
(݊ௗ௘௦௜௥௘ௗ

௞) for the desired tag using ݀݁݁ݏௗ௘௦௜௥௘ௗ
௞ . Now,

all the tags receiving ݎ௜ will reply with next random
number ሺ݊௜

௞ሻ for this particular reader. Reader
compares computed random number with those
received from the tags. If a match occurs, reader
becomes sure that the ௗܶ௘௦௜௥௘ௗ is present.

Search Protocol 1
ܴ௜ ՜ ܶ ׷ כ ௜ݎ ݐݏܽܿ݀ܽ݋ݎܤ
ܴ௜ ׷ ௗ௘௦௜௥௘ௗ݊ ݁ݐݑ݌݉݋ܥ

௞ ൌ ࣪ሺ݀݁݁ݏௗ௘௦௜௥௘ௗ
௞ ሻ

ܶ ௜݊ ׷ כ
௞ ൌ ࣪൫݀݁݁ݏ௜

௞൯
ܴ௜ ՚ ܶ ׷ כ ݊௜

௞
ܴ௜ ׷ ሺ݊௜ ݂ܫ

௞ ൌ ݊ௗ௘௦௜௥௘ௗ
௞ ሻ ݄݊݁ݐ

 ௗܶ௘௦௜௥௘ௗ ݂݀݊ݑ݋
 ݁ݏ݈ܧ
 ௗܶ௘௦௜௥௘ௗ ݊݀݊ݑ݋݂ ݐ݋
One main problem of this protocol is that it is a one

side authenticated search protocol. Here tags do not
authenticate the readers before replying. So they
cannot know whether they are replying to an adversary
or to a valid reader. Tags should only reply to authorize
the reader. But here tags reply whenever they see a
query. Sometimes even an adversary may query a
group of tags to find out if a particular valuable tag is
present. So the tag needs to authenticate the reader
before replying. It means that when ܴ௜ broadcasts the
search query, every tag, not only the tag that satisfies
this query, needs to authenticate ܴ௜ before replying.

Another issue is, as seeds are not updated in both
parties after each search, tags will reply to the same

e݁݀௜ݏ
௞ାଵ ࣪ሺ. ሻ ݀݁݁ݏ௜

௞

݊௜
௞

reader with the same answers in subsequent queries. If
an adversary queries with a previously listened ݎ௜, tags
will reply with the exact same values as before.
Although the adversary will not be able to find out
which tag the reader was searching for, it will become
sure that the same search is taking place. Querying
several times with different ݎ௜, adversary can get a
pattern for queries and replies.

The problem of replying with the fixed answer for
the same reader can be solved if we update the seed in
both parties after each search, which is specified in
search protocol 2.

Search Protocol 2
ܴ௜ ՜ ܶ ׷ כ ௜ݎ ݐݏܽܿ݀ܽ݋ݎܤ
ܴ௜ ׷ ௗ௘௦௜௥௘ௗ݊ ݁ݐݑ݌݉݋ܥ

௞ ൌ ࣪ሺ݀݁݁ݏௗ௘௦௜௥௘ௗ
௞ ሻ

ܶ ௜݊ ׷ כ
௞ ൌ ࣪൫݀݁݁ݏ௜

௞൯
௜݀݁݁ݏ ൌ ௜݀݁݁ݏ

௞ାଵ
ܴ௜ ՚ ܶ ׷ כ ݊௜

௞
ܴ௜ ׷ ݁݁ݏ ௝݀ ൌ ݁݁ݏ ௝݀

௞ାଵ ݂݃ܽݐ ݄ܿܽ݁ ݎ݋
 ௝ܶ ௜݊ ݄ݐ݅ݓ ݃݊݅ݕ݈݌݁ݎ

௞ , ݁ݎ݄݁ݓ
 1 ൑ ݆ ൑ ݊
ሺ݊௜ ݂ܫ

௞ ൌ ݊ௗ௘௦௜௥௘ௗ
௞ ሻ ݄݊݁ݐ

 ௗܶ௘௦௜௥௘ௗ ݂݀݊ݑ݋
 ݁ݏ݈ܧ
 ௗܶ௘௦௜௥௘ௗ ݊݀݊ݑ݋݂ ݐ݋
In this protocol, after replying to the search query

each tag will update its seed. A reader will update the
seeds of only those tags, which have replied. But here
the problem is that reader has to update Οሺ݊ሻ seeds in
worst case scenario. Therefore, the reader is burdened
with more computations.

Another problem of this protocol is
synchronization. By querying tags, an adversary can
desynchronize the tags and reader very easily. As a
result after de-synchronization, in spite of the presence
of the desired tag, a legitimate reader cannot access it.

Therefore, we can set up our goals for searching as
follows. Tags should only respond to authenticated
readers. The reader should only query authenticated
tags. And both parties should update their seeds after
authentication. All these properties are incorporated in
our final search protocol which is search protocol 3.
Her, the reader issues a query in a way that only an
authenticated tag can understand and the tag replies in
such a manner that only an authenticated reader can
understand.

Search Protocol 3
ܴ௜ ׷ ௗ௘௦௜௥௘ௗ݊ ݁ݐݑ݌݉݋ܥ

௞ ൌ ࣪ሺ݀݁݁ݏௗ௘௦௜௥௘ௗ
௞ ሻ

ܴ௜ ՜ ܶ ׷כ ௗ௘௦௜௥௘ௗ݊ ݐݏܽܿ݀ܽ݋ݎܤ
௞

 ܶ ௜݊ ׷ כ
௞ ൌ ࣪൫݀݁݁ݏ௜

௞൯
ሺ݊௜ ݂ܫ

௞ ൌ ݊ௗ௘௦௜௥௘ௗ
௞ ሻ ݄݊݁ݐ

 ݊௜
௞ାଵ ൌ ࣪൫݀݁݁ݏ௜

௞ାଵ൯
௜݀݁݁ݏ ൌ ௜݀݁݁ݏ

௞ାଶ
 ܴ௜ ՚ ௝ܶ ׷ ݊௜

௞ାଵ
 ݁ݏ݈ܧ

 ܴ௜ ՚ ௝ܶ ׷ ߣ ݕݐ݈ܾܾ݅ܽ݋ݎ݌ ݄ݐ݅ݓ ݀݊ܽݎ
ܴ௜ ׷ ݊ௗ௘௦௜௥௘ௗ

௞ାଵ ൌ ࣪ሺ݀݁݁ݏௗ௘௦௜௥௘ௗ
௞ାଵ ሻ

ሺ݊௜ ݂ܫ
௞ାଵ ൌ ݊ௗ௘௦௜௥௘ௗ

௞ାଵ ሻ ݄݊݁ݐ
ௗ௘௦௜௥௘ௗ݀݁݁ݏ ൌ ௗ௘௦௜௥௘ௗ݀݁݁ݏ

௞ାଶ
 ௗܶ௘௦௜௥௘ௗ ݂݀݊ݑ݋
 ݁ݏ݈ܧ
 ௗܶ௘௦௜௥௘ௗ ݊݀݊ݑ݋݂ ݐ݋
In this protocol, ܴ௜ computes ݊ௗ௘௦௜௥௘ௗ

௞ and
broadcasts it to find out ௗܶ௘௦௜௥௘ௗ. All tags receiving
݊ௗ௘௦௜௥௘ௗ

௞ will compare this with their own individual
݊௜

௞. If a match occurs, the tag will know that it is an
authorized reader. A match can occur only in ௗܶ௘௦௜௥௘ௗ
because only a legitimate reader can know its seed.
Therefore only a valid reader can generate valid
݊ௗ௘௦௜௥௘ௗ

௞ . Hence after authenticating the reader in this
way, ௗܶ௘௦௜௥௘ௗ will reply with next number (݊௜

௞ାଵ) for
this reader and update its seed. And for those tags in
which a match doesn’t occur, they will reply with a
random number with probability ߣ. Reader now
computes ݊ௗ௘௦௜௥௘ௗ

௞ାଵ and compares it with ݊௜
௞ାଵ. If a

match occurs, then reader can be sure that it is a valid
tag as only a legitimate tag can generate this.
Therefore, the reader now updates its seed for ௗܶ௘௦௜௥௘ௗ.
This protocol is resistant against almost all the attacks.
Security analysis for this protocol is discussed in the
next subsection.

In search protocol 3 we let some other tags also
reply in addition to the desired tag to put the actual
reply in disguise. Each tag receiving a search query
that does not match with the request will have some
probability ߣ of replying. So by observing tag replies,
an adversary cannot reveal a particular tag that the
reader is searching for.

4.3. Security analysis of search protocols

Tracking: Our final protocol is resistant against

tracking. Tracking attack in searching is slightly
different from the one found in security literature. Here
adversary cannot pick a particular tag to track. Rather,
he can only track a tag that has been searched for by a
legitimate reader. Consider the following attack. ߷
eavesdrops on the transaction between a reader ܴ௜ and
tags. So he knows the queries and replies. He will not
be able to reverse compute the replies or learn the
query but he can certainly be sure that a searching has
taken place. However he cannot be sure, which tag

ௗܶ௘௦௜௥௘ௗ reader was searching for, as besides the
desired tag other tags also replied with probability ߣ.

Now ߷ can replay previously listened ݊ௗ௘௦௜௥௘ௗ
௞ to track

ௗܶ௘௦௜௥௘ௗ. But after the previous successful searching
between ܴ௜ and ௗܶ௘௦௜௥௘ௗ, both parties have changed
their seeds. So ݊ௗ௘௦௜௥௘ௗ

௞ , send by the adversary, will
not match with the one computed by ௗܶ௘௦௜௥௘ௗ. As a
result ௗܶ௘௦௜௥௘ௗ will reply will a random number. At the
same time other tags will also reply a random number.
If ߷ continues to query with different ݊ௗ௘௦௜௥௘ௗ

௞ , all tags
including the desired tag will reply randomly.
Therefore ߷ will not be able to track a tag.

Cloning: Consider the following cloning attack.
 ܴ௜ queries to search a tag ௗܶ௘௦௜௥௘ௗ. If ௗܶ௘௦௜௥௘ௗ is
present it will reply. At the same time other tags will
also reply. Suppose, ߷ finds out the tag the reader was
searching for. Now if he is able to clone ௗܶ௘௦௜௥௘ௗ, then
he can fool ܴ௜ by not replying or even giving a false
reply. As a result, ܴ௜ will assume that the desired tag

ௗܶ௘௦௜௥௘ௗ does not exist in this group. In our protocol,
this attack is impossible. Because ߷ is unable to find
out, which tag the reader was searching for.

Eavesdropping: Here ߷ observes all the queries
between a reader and tags. And his goal is to use the
data to impersonate a fake reader ܴ௜ or a fake tag ௝ܶ.
Our protocol is powerful against this attack. In our
protocol ߷ will not be able to find out the expected
reply of the reader as more than one tag will reply. He
can only observe ݊ௗ௘௦௜௥௘ௗ

௞ send by the reader. With his
little knowledge he cannot impersonate ܴ௜ or ௝ܶ,
because after the last successful searching between ܴ௜
and ௗܶ௘௦௜௥௘ௗ, both of them have updated their seeds. So
both of them are now expecting new values which are
not known by ߷. Therefore by eavesdropping ߷ cannot
launch a replay attack by using previous values.

5. Illustrative examples

In this section we have drawn a couple of

application scenarios that can be directly benefited
from our approach presented in this paper.

 User Interactions in a smart space: A smart space
typically contains multiple smart objects offering
several invisible services. Users’ personal devices are
usually used to interact with the smart space.
Discovering invisible services securely and
authenticating the users are interesting research
problems in the smart space domain. Our approach
offers promising solutions to both of these problems.
Iconic images embedded with RFID tags can advertise
invisible services and user terminals can be equipped
with an RFID reader. A user can search for a specific
service (tags in this case) or can initiate a service by
touching the tag. Considering the pre-negotiation
between the reader and the tags, secure discovery and

authentication mechanism can be easily achieved
applying our protocol.

Container search within seaports: There are
hundreds and thousands of containers within a seaport.
Containers are parked and stacked by hundreds of
employees and countless drivers who deliver
containers from remote locations. Moreover, containers
are also unloaded from ships in order to deliver them to
different customers and locations. Whether a particular
container has already been unloaded from the ship or
not, whether a specific container has arrived at the
seaport for shipment or not, are some of the major
tasks performed within seaports. But it is quite
impossible to search for a particular container
manually. That is why seaports in different countries
have long been searching for technologies that can
identify specific containers and that can confirm the
existence of containers within seaports. One solution to
the aforementioned problem can be to use RFID tags
for container identification. Now through the use of our
serverless search protocols, it will be quite easy to
search for a particular container by searching the tag. If
a container’s tag id (in fact ݀݁݁ݏ) is known, then we
can invoke a search operation with this id within the
seaport. If the container is present within the seaport
then according to our protocol, definitely that
particular tag will reply. Thus we can be sure about the
container’s existence.

6. Conclusions

RFID systems have been developing continuously

in selected areas for decades now. It is still a potential
technology which can be applied in practically all areas
of daily life. Theoretically the application areas of
RFID systems are unlimited. In spite of this, secure
RFID searching has not gathered much attention till
now. But we firmly believe that it will become very
important when RFID will be deployed at a larger
scale. In this paper we introduce various problems
incurred while performing secure RFID tag search.
Moreover, we analyzed different attack models of
which tag searching is severely vulnerable. And finally
we proposed secure serverless RFID tag searching
protocols that can safeguard against those major
attacks without server’s intervention. We also
discussed a couple of applications of our proposed
serverless protocol in a real life scenario. We are
currently working on realizing these scenarios through
actual implementations. The application of our
protocol is not limited to these examples only, but it
can also be applied to some other real life
circumstances.

7. References

[1] G. Avoine, and P. Oechslin, “A Scalable and Provably

Secure Hash Based RFID Protocol”, In International
Workshop on Pervasive Computing and Communication
Security (PerSec ’05), IEEE, IEEE Computer Society
Press, Kauai Island, Hawaii, USA, March 2005, pp.
110–114.

[2] M.Conti, R. D. Pietro, L. V. Mancini, and A. Spognardi,
“RIPP-FS: an RFID Identification, Privacy Preserving
Protocol with Forward Secrecy”, In International
Workshop on Pervasive Computing and Communication
Security (PerSec ‘07), IEEE, IEEE Computer Society
Press, New York, USA, March 2007, pp. 229-234.

[3] A. Juels, “RFID Security and Privacy: A Research
Survey”, RSA Laboratories, September 2005.

[4] M.Ohkubo,K. Suzuki, and S. Kinoshita, “Cryptographic
Approach to “Privacy-Friendly” Tags”, In RFID
Privacy Workshop, MIT, MA, USA, November 2003.

[5] C. C.Tan, B. Sheng, and Q. Li, “Severless Search and
Authentication Protocols for RFID”, In Proceedings of
the Fifth Annual IEEE International Conference on
Pervasive Computing and Communications (PerCom
‘07), New York, USA, March 2007.

[6] G. Tsudik, “YA-TRAP: Yet another Trivial RFID
Authentication Protocol”, In International Conference
on Pervasive Computing and Communications (PerCom
’06), IEEE, IEEE Computer Society Press, Pisa, Italy,
March 2006.

