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Abstract 
 

For RFID tags to proliferate in our day to day life, 
they will have to offer practical, low cost and secured 
mechanisms for tag authentication which has been in 
the midst of researcher’s interest for almost a decade. 
One extension of RFID authentication is RFID tag 
searching, which has not been given much attention so 
far. But we firmly believe that in near future tag 
searching will be a significant issue. In this paper we 
propose a lightweight and serverless RFID tag 
searching protocol. This protocol can search a 
particular tag efficiently without server’s intervention. 
Furthermore they are secured against major security 
threats. 
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1. Introduction 
 

RFID systems (referring to Radio Frequency 
IDentification) embrace one important development 
track in the framework of ubiquitous or pervasive 
computing. It is an automatic identification system, 
which relies on storing and remotely retrieving data on 
objects by using RFID tags. Tags equipped within 
objects have unique identification information and is 
applicable in various fields such as supply chain 
management, employee identification, product 
maintenance etc. 

In all such practical implementations, often a reader 
needs to determine whether a particular tag exists 
within a group of tags. This is referred to as RFID 
searching. In fact RFID searching is an extension of 
RFID authentication. By authenticating every tag 
within a group, we can find out the desired tag. But 
this is very inefficient. Tag searching with the help of 
central database will not be a challenging issue. But 
without the help of server, the reader has to search a 
tag entirely by itself. This is a critical task because it is 
vulnerable to privacy and security threats [3]. For 

example, through the broadcast of a search query, a 
reader in a warehouse wants to search for a tag which 
belongs to a precious object. Now if the tag exists, it 
will reply and an adversary will become sure that a 
valuable object exists around him. Such security 
threats are very common while searching. So 
introducing prevailing, secure and practical RFID 
searching is one of the major goals of researchers now 
a day. 

So far serverless searching is discussed only in [5]. 
In serverless system, reader has to search, authenticate 
as well as provide security without server’s 
intervention. This departure from server based system 
will also reduce cost for RFID system deployment in 
many areas where tag searching is done frequently like 
supply chain management and E-passport.  

In this paper, we tried to find solutions to the 
following questions: a) how readers can search a 
particular tag without the help of server? b) how a tag 
identifies that the communicating reader is legitimate? 
Here, we propose a low cost, secured, serverless search 
protocol that provides solutions to the preceding 
questions. And all these characteristics are ensured 
without a back end server which makes our proposal 
suitable for various application areas. 

 
1.1 Our major contribution 
 

I. In this paper we are proposing serverless, forward 
secure, anonymous searching protocols for RFID tags. 

II. We have considered all the major attacks and 
our search protocols are secure against those attacks. 
We considered security of both tags and readers as 
both can be attacked by adversaries 

III. In this paper, we discussed some real life 
application challenges and their solutions using our 
proposed serverless search protocols. 

The remainder of the paper is organized as follows. 
The next section presents related work. Some major 
security requirements for RFID search protocols are 
reflected in section 3. Section 4.1 provides some 



preliminaries for the rest of the paper. Section 4.2 
provides search protocols and their security analysis is 
discussed in section 4.3. Some real life challenges and 
solutions are discussed in section 5. And finally in 
section 6 some concluding remarks are reported.  

2. Related works 
 

The assortment of research literature on RFID 
searching is inadequate although it is a major issue in 
its real life implementation. We stated in section 1 that 
RFID searching is an extension of RFID 
authentication. So we will go through some relevant 
literatures on RFID authentication. But we will mainly 
concentrate on the single serverless searching protocols 
proposed so far [5]. 

RFID systems are severely vulnerable to many 
security and privacy threats.  That is why numbers of 
techniques have been proposed for ensuring RFID 
security and the assortment of authentication protocols 
is quite extensive [3]. Most of the authentication 
protocols proposed so far is backed by central 
database. One such famous authentication protocol is 
YA-TRAP [6] which is not secured against DOS 
attack. Another hash chain based RFID identification 
protocol is RIPP-FS [2], which shares a private 
symmetric key with server. Another famous 
lightweight authentication protocol is OSK [4], which 
suffers from the problem of desynchronization. In [1], 
Avoine and Oechslin modified OSK which removed 
the scalability problem. Serverless authentication 
protocols are proposed for the first time in [5]. In this 
paper, Chiu et al. proposed a challenge response based 
mutual authentication protocol. But the reader has to 
do lot of computation to find out  ݅݀ of the required 
tag. And their protocol 2 is not purely and strongly 
anonymous.  

Serverless RFID searching protocols were also 
proposed in [5] for the first time. According to this 
protocol, a reader wishes to find out whether a specific 
tag is within its vicinity by broadcasting 
݄ሺ݂ሺݎ௜, ௝ሻ||݊௥ሻݐ  ْ  ݅ ௝݀  , ݊௥ and ݎ௜ . Based on this 
search query, only the intended tag, if exists, reply with 
its encrypted ݅݀. Other tags within the reader’s vicinity 
reply a random number based on certain probability. 
Tags authenticate the reader based on the search query 
and reader authenticates tags based on the reply 
“string”. Both valid query and valid replies are 
generated by legitimate parties. 

 
3. Security requirements 
 

A number of research literatures has dealt with 
several privacy and security issues of RFID. Some of 
which are discussed in section 2. RFID searching 

should also be secured because an adversary may want 
to find out whether precious objects exist by querying 
tags. So we point out that the following security goals 
must be guaranteed by our protocols: protection against 
tracking, eavesdropping and cloning.  

 
4. Search protocols 

 
In practical implementation of RFID, a reader often 

wants to find out whether a particular tag exists around 
him within a group of tags. One solution can be to 
perform authentication protocol for each of the tags of 
that group. But this is an inefficient approach as the 
number of tags within a system is likely to be huge. So 
another solution for RFID searching can be: reader will 
search for a tag and only that particular tag, if it exists, 
will reply in return. So the objective of secure RFID 
searching should be: the reader will search a specific 
RFID tag which he is authorized to access. And tags 
will reply with valid answers only if the reader is 
legitimate. 

In this paper, we present different search protocols. 
According to the protocols, tag identifier is not passed 
to the reader in response to a reader’s query. Whereas 
the tag sends certifying information to the reader in 
such a way that only the authorized reader is able to 
find out whether this is the desired tag. In this way, the 
reader can become sure about the existence of the tag 
that he is searching for.  
 
4.1. Notation and assumption  

 
We refer an RFID reader denoted as ܴ. Each ܴ has 

a unique identifier ݎ and a contact list ࣦ . We will 
describe the contents of ࣦ a little later. ܴ obtains ݎ and 
ࣦ from a trusted center, ܶܥ, after authenticating itself. 
The ܶܥ is a trusted party who deploys all the RFID 
tags and authorizes any RFID reader. For the sake of 
simplicity we assume that ܴ and ܶܥ communicate 
through a secure channel. 

According to our proposal, Each RFID tag ܶ 
contains a unique value ݅݀, a unique secret ݐ in its 
nonvolatile memory. All readers and tags also have 
knowledge of a pseudorandom number generator ࣪ሺ. ሻ 
which takes a ݀݁݁ݏ as an argument and outputs a 
pseudorandom number according to its distribution. 
After generating a pseudorandom number, ࣪ሺ. ሻ makes 
use of a function ࣧሺ. ሻ that generates next ݀݁݁ݏ of the 
pseudorandom number generator. For each authorized 
tag, the current seed is stored in the reader in its 
nonvolatile memory. And in case of tag, a current ݀݁݁ݏ 
is stored for the authenticated reader in its nonvolatile 
memory. The initial ݀݁݁ݏ is computed by ܶܥ and 
stored in the tag and the reader by ܶܥ. The ݀݁݁ݏ stored 



in both the reader and tag, is defined in the following 
manner: 

௜݀݁݁ݏ 
଴ ൌ  ݂ሺݎ , ሻݐ ൌ ݄ሺݎ צ  ሻݐ

௜݀݁݁ݏ 
௞ାଵ ൌ  ࣧ൫݀݁݁ݏ௜

௞൯ 
where, ݄ሺ. ሻ is a one way hash function and ݅ 

represents ݅௧௛ tag or reader. Superscript ݇ is used to 
represent the ݀݁݁ݏ after generating ሺ݇ െ 1ሻ௦௧ 
pseudorandom number from the distribution of 
pseudorandom number generator. ݀݁݁ݏ௜

௞ is used to 
generate ݇௧௛ number according to its distribution. 
From now on, we will refer to ݇ as the step ݇. In fact, 
both the ݀݁݁ݏs in tag and reader become same after 
each authentication and searching. 

Subscripts are used to describe a particular ܴ or ܶ 
and their respective variables. Thus a particular RFID 
reader ݅ will be ܴ௜, with an identifier ݎ௜ and contact list 
ࣦ௜. A tag ݆ is ௝ܶ and has a secret ݐ௝. The contact list ࣦ 
contains information about the RFID tags which a 
particular ܴ has access to. ࣦ has a list of all ݀݁݁ݏ଴ ൌ
݂ሺݎ,  ,݅ has authorized ܴ to access. So reader ܥܶ ሻ thatݐ
ܴ௜ authorized to access tags ଵܶ,൉ ൉ ൉, ௡ܶ will have ࣦ௜ 
after authenticating itself to ܶܥ where, 

       ࣦ௜ ൌ

ە
ۖ
۔

ۖ
ۓ ଵ݀݁݁ݏ

଴: ݅݀ଵ 
ଶ݀݁݁ݏ

଴ ׷ ݅݀ଶ 
.
.

௡݀݁݁ݏ 
଴ ׷ ݅݀௡
 ۙ

ۖ
ۘ

ۖ
ۗ

 

Note that ܴ௜ does not know any of the tags secret ݐ. 
It only knows the outcome of the function ݂ሺݎ,  ሻ asݐ
 cannot be ܥܶ ଴. We assume that the݀݁݁ݏ
compromised, and that all readers once authenticated 
by the ܶܥ are trusted. We denote an adversary as ߷ .  

௜݀݁݁ݏ
௞ and ݁݁ݏ ௝݀

௞  represents current ݀݁݁ݏ of 
pseudo random number distribution of ܴ௜ and  ௝ܶ  
respectively, where superscript ݇ bears aforementioned 
meaning. ௝݊

௞ is a pseudorandom number generated by 
݅௧௛ reader for the ݆௧௛ tag using ݁݁ݏ ௝݀

௞ at step ݇. 
Similarly, ݊௜

௞ is another pseudorandom number 
generated by ݆௧௛ tag for the ݅௧௛ reader using ݀݁݁ݏ௜

௞ at 
step ݇. 

We can assume ࣧሺ. ሻ as an irreversible one way 
hash function. Therefore a ݀݁݁ݏ can’t be linked to the 
previous ݀݁݁ݏ. Although we haven’t explicitly shown 
the use of ࣧሺ. ሻ by ࣪ሺ. ሻ in the protocols, after 
generating a new pseudorandom number ࣪ሺ. ሻ executes 
ࣧሺ. ሻ to update the ݀݁݁ݏ which will be stored in a 
nonvolatile memory of reader or tag. For example, ௝ܶ 
generates a pseudorandom number ݊௜

௞ for ܴ௜ using 
௜݀݁݁ݏ

௞ stored in ௝ܶand at the same time next seed 
௜݀݁݁ݏ

௞ାଵ is also generated. Therefore  ࣪ሺ. ሻ performs 
like: 

 
 
    
 
 
Figure 1. Seed refreshing and pseudorandom 
         number generation mechanism. 
 
Correspondingly, in case of a reader ܴ௜, ࣪ሺ. ሻ 

performs in the same way by replacing ݅ with ݆. 
Whenever the ݀݁݁ݏ needs to be stored in nonvolatile 
memory it is explicitly mentioned in the protocols. For 
example, ݁݁ݏ ௝݀ ൌ ݁݁ݏ  ௝݀

௞  represents that ݁݁ݏ ௝݀
௞ is 

stored in ݁݁ݏ ௝݀ along with ݅ ௝݀ in contact list, ࣦ of 
reader.  

 
4.2. Protocols 
 

Suppose, a reader ܴ௜ is searching for a tag which we 
are referring to as ௗܶ௘௦௜௥௘ௗ. One way of searching may 
be according to Search Protocol 1. Here ܴ௜ broadcasts 
its ݎ௜ wishing to find ௗܶ௘௦௜௥௘ௗ. Before getting reply 
from the tags, ܴ௜ computes next random number 
(݊ௗ௘௦௜௥௘ௗ

௞ ) for the desired tag using ݀݁݁ݏௗ௘௦௜௥௘ௗ
௞ . Now, 

all the tags receiving ݎ௜ will reply with next random 
number ሺ݊௜

௞ሻ for this particular reader. Reader 
compares computed random number with those 
received from the tags. If a match occurs, reader 
becomes sure that the ௗܶ௘௦௜௥௘ௗ is present. 

 
Search Protocol 1 
ܴ௜ ՜  ܶ ׷  כ    ௜ݎ ݐݏܽܿ݀ܽ݋ݎܤ
ܴ௜ ׷               ௗ௘௦௜௥௘ௗ݊  ݁ݐݑ݌݉݋ܥ 

௞ ൌ ࣪ሺ݀݁݁ݏௗ௘௦௜௥௘ௗ
௞ ሻ  

ܶ ௜݊   ׷             כ
௞ ൌ  ࣪൫݀݁݁ݏ௜

௞൯ 
ܴ௜ ՚  ܶ ׷  כ   ݊௜

௞    
ܴ௜ ׷               ሺ݊௜ ݂ܫ  

௞ ൌ  ݊ௗ௘௦௜௥௘ௗ
௞ ሻ ݄݊݁ݐ     

         ௗܶ௘௦௜௥௘ௗ ݂݀݊ݑ݋  
  ݁ݏ݈ܧ                      
           ௗܶ௘௦௜௥௘ௗ ݊݀݊ݑ݋݂ ݐ݋   
One main problem of this protocol is that it is a one 

side authenticated search protocol. Here tags do not 
authenticate the readers before replying. So they 
cannot know whether they are replying to an adversary 
or to a valid reader. Tags should only reply to authorize 
the reader. But here tags reply whenever they see a 
query. Sometimes even an adversary may query a 
group of tags to find out if a particular valuable tag is 
present. So the tag needs to authenticate the reader 
before replying. It means that when ܴ௜ broadcasts the 
search query, every tag, not only the tag that satisfies 
this query, needs to authenticate ܴ௜ before replying. 

Another issue is, as seeds are not updated in both 
parties after each search, tags will reply to the same 

e݁݀௜ݏ
௞ାଵ ࣪ሺ. ሻ ݀݁݁ݏ௜

௞

݊௜
௞ 



reader with the same answers in subsequent queries. If 
an adversary queries with a previously listened ݎ௜, tags 
will reply with the exact same values as before. 
Although the adversary will not be able to find out 
which tag the reader was searching for, it will become 
sure that the same search is taking place. Querying 
several times with different ݎ௜, adversary can get a 
pattern for queries and replies.  

The problem of replying with the fixed answer for 
the same reader can be solved if we update the seed in 
both parties after each search, which is specified in 
search protocol 2. 

 
Search Protocol 2 
ܴ௜ ՜  ܶ ׷  כ   ௜ݎ ݐݏܽܿ݀ܽ݋ݎܤ 
ܴ௜ ׷               ௗ௘௦௜௥௘ௗ݊  ݁ݐݑ݌݉݋ܥ 

௞ ൌ ࣪ሺ݀݁݁ݏௗ௘௦௜௥௘ௗ
௞ ሻ     

ܶ ௜݊   ׷             כ
௞ ൌ  ࣪൫݀݁݁ݏ௜

௞൯       
௜݀݁݁ݏ                      ൌ ௜݀݁݁ݏ 

௞ାଵ 
ܴ௜ ՚  ܶ ׷  כ   ݊௜

௞   
ܴ௜ ׷               ݁݁ݏ    ௝݀  ൌ ݁݁ݏ  ௝݀

௞ାଵ ݂݃ܽݐ ݄ܿܽ݁ ݎ݋   
     ௝ܶ ௜݊ ݄ݐ݅ݓ ݃݊݅ݕ݈݌݁ݎ 

௞ ,  ݁ݎ݄݁ݓ
                             1 ൑ ݆ ൑ ݊ 
ሺ݊௜ ݂ܫ              

௞ ൌ  ݊ௗ௘௦௜௥௘ௗ
௞ ሻ ݄݊݁ݐ 

              ௗܶ௘௦௜௥௘ௗ ݂݀݊ݑ݋  
  ݁ݏ݈ܧ                      
          ௗܶ௘௦௜௥௘ௗ ݊݀݊ݑ݋݂ ݐ݋    
In this protocol, after replying to the search query 

each tag will update its seed. A reader will update the 
seeds of only those tags, which have replied. But here 
the problem is that reader has to update Οሺ݊ሻ seeds in 
worst case scenario. Therefore, the reader is burdened 
with more computations. 

Another problem of this protocol is 
synchronization. By querying tags, an adversary can 
desynchronize the tags and reader very easily. As a 
result after de-synchronization, in spite of the presence 
of the desired tag, a legitimate reader cannot access it. 

Therefore, we can set up our goals for searching as 
follows. Tags should only respond to authenticated 
readers. The reader should only query authenticated 
tags. And both parties should update their seeds after 
authentication. All these properties are incorporated in 
our final search protocol which is search protocol 3. 
Her, the reader issues a query in a way that only an 
authenticated tag can understand and the tag replies in 
such a manner that only an authenticated reader can 
understand. 

 
Search Protocol 3 
ܴ௜ ׷             ௗ௘௦௜௥௘ௗ݊  ݁ݐݑ݌݉݋ܥ 

௞ ൌ ࣪ሺ݀݁݁ݏௗ௘௦௜௥௘ௗ
௞ ሻ 

ܴ௜ ՜  ܶ ׷כ ௗ௘௦௜௥௘ௗ݊  ݐݏܽܿ݀ܽ݋ݎܤ 
௞   

     ܶ ௜݊  ׷           כ
௞ ൌ  ࣪൫݀݁݁ݏ௜

௞൯     
ሺ݊௜ ݂ܫ                  

௞ ൌ  ݊ௗ௘௦௜௥௘ௗ
௞ ሻ ݄݊݁ݐ 

  ݊௜
௞ାଵ ൌ  ࣪൫݀݁݁ݏ௜

௞ାଵ൯    
௜݀݁݁ݏ   ൌ ௜݀݁݁ݏ 

௞ାଶ  
               ܴ௜ ՚ ௝ܶ ׷  ݊௜

௞ାଵ   
 ݁ݏ݈ܧ          

              ܴ௜ ՚ ௝ܶ ׷    ߣ ݕݐ݈ܾܾ݅ܽ݋ݎ݌ ݄ݐ݅ݓ ݀݊ܽݎ 
ܴ௜ ׷              ݊ௗ௘௦௜௥௘ௗ

௞ାଵ ൌ ࣪ሺ݀݁݁ݏௗ௘௦௜௥௘ௗ
௞ାଵ ሻ    

ሺ݊௜ ݂ܫ          
௞ାଵ ൌ  ݊ௗ௘௦௜௥௘ௗ

௞ାଵ ሻ ݄݊݁ݐ  
ௗ௘௦௜௥௘ௗ݀݁݁ݏ   ൌ ௗ௘௦௜௥௘ௗ݀݁݁ݏ 

௞ାଶ      
  ௗܶ௘௦௜௥௘ௗ ݂݀݊ݑ݋    
  ݁ݏ݈ܧ           
      ௗܶ௘௦௜௥௘ௗ ݊݀݊ݑ݋݂ ݐ݋     
In this protocol,  ܴ௜ computes  ݊ௗ௘௦௜௥௘ௗ

௞  and 
broadcasts it to find out ௗܶ௘௦௜௥௘ௗ. All tags receiving 
݊ௗ௘௦௜௥௘ௗ

௞  will compare this with their own individual 
݊௜

௞. If a match occurs, the tag will know that it is an 
authorized reader.  A match can occur only in  ௗܶ௘௦௜௥௘ௗ  
because only a legitimate reader can know its seed. 
Therefore only a valid reader can generate valid 
݊ௗ௘௦௜௥௘ௗ

௞ . Hence after authenticating the reader in this 
way, ௗܶ௘௦௜௥௘ௗ will reply with next number (݊௜

௞ାଵ) for 
this reader and update its seed. And for those tags in 
which a match doesn’t occur, they will reply with a 
random number with probability ߣ. Reader now 
computes  ݊ௗ௘௦௜௥௘ௗ

௞ାଵ  and compares it with ݊௜
௞ାଵ. If a 

match occurs, then reader can be sure that it is a valid 
tag as only a legitimate tag can generate this. 
Therefore, the reader now updates its seed for ௗܶ௘௦௜௥௘ௗ. 
This protocol is resistant against almost all the attacks. 
Security analysis for this protocol is discussed in the 
next subsection. 

In search protocol 3 we let some other tags also 
reply in addition to the desired tag to put the actual 
reply in disguise. Each tag receiving a search query 
that does not match with the request will have some 
probability ߣ of replying. So by observing tag replies, 
an adversary cannot reveal a particular tag that the 
reader is searching for. 

 
4.3. Security analysis of search protocols  

 
Tracking: Our final protocol is resistant against 

tracking. Tracking attack in searching is slightly 
different from the one found in security literature. Here 
adversary cannot pick a particular tag to track. Rather, 
he can only track a tag that has been searched for by a 
legitimate reader. Consider the following attack. ߷ 
eavesdrops on the transaction between a reader ܴ௜ and 
tags. So he knows the queries and replies. He will not 
be able to reverse compute the replies or learn the 
query but he can certainly be sure that a searching has 
taken place. However he cannot be sure, which tag 

ௗܶ௘௦௜௥௘ௗ reader was searching for, as besides the 
desired tag other tags also replied with probability ߣ.  



Now ߷ can replay previously listened ݊ௗ௘௦௜௥௘ௗ
௞  to track  

ௗܶ௘௦௜௥௘ௗ. But after the previous successful searching 
between  ܴ௜ and ௗܶ௘௦௜௥௘ௗ, both parties have changed 
their seeds. So  ݊ௗ௘௦௜௥௘ௗ

௞ , send by the adversary, will 
not match with the one computed by ௗܶ௘௦௜௥௘ௗ. As a 
result ௗܶ௘௦௜௥௘ௗ will reply will a random number. At the 
same time other tags will also reply a random number. 
If ߷ continues to query with different  ݊ௗ௘௦௜௥௘ௗ

௞ , all tags 
including the desired tag will reply randomly. 
Therefore ߷ will not be able to track a tag. 

Cloning: Consider the following cloning attack. 
 ܴ௜ queries to search a tag ௗܶ௘௦௜௥௘ௗ. If ௗܶ௘௦௜௥௘ௗ is 
present it will reply. At the same time other tags will 
also reply. Suppose, ߷ finds out the tag the reader was 
searching for. Now if he is able to clone ௗܶ௘௦௜௥௘ௗ, then 
he can fool  ܴ௜ by not replying or even giving a false 
reply. As a result, ܴ௜ will assume that the desired tag 

ௗܶ௘௦௜௥௘ௗ does not exist in this group. In our protocol, 
this attack is impossible. Because ߷ is unable to find 
out, which tag the reader was searching for.  

Eavesdropping: Here ߷ observes all the queries 
between a reader and tags. And his goal is to use the 
data to impersonate a fake reader  ܴ௜ or a fake tag ௝ܶ. 
Our protocol is powerful against this attack. In our 
protocol ߷ will not be able to find out the expected 
reply of the reader as more than one tag will reply. He 
can only observe  ݊ௗ௘௦௜௥௘ௗ

௞  send by the reader. With his 
little knowledge he cannot impersonate  ܴ௜ or ௝ܶ, 
because after the last successful searching between  ܴ௜ 
and ௗܶ௘௦௜௥௘ௗ, both of them have updated their seeds. So 
both of them are now expecting new values which are 
not known by ߷. Therefore by eavesdropping ߷ cannot 
launch a replay attack by using previous values. 

5. Illustrative examples 
 
In this section we have drawn a couple of 

application scenarios that can be directly benefited 
from our approach presented in this paper.  
 
     User Interactions in a smart space: A smart space 
typically contains multiple smart objects offering 
several invisible services. Users’ personal devices are 
usually used to interact with the smart space.  
Discovering invisible services securely and 
authenticating the users are interesting research 
problems in the smart space domain. Our approach 
offers promising solutions to both of these problems. 
Iconic images embedded with RFID tags can advertise 
invisible services and user terminals can be equipped 
with an RFID reader. A user can search for a specific 
service (tags in this case) or can initiate a service by 
touching the tag. Considering the pre-negotiation 
between the reader and the tags, secure discovery and 

authentication mechanism can be easily achieved 
applying our protocol.  
  

Container search within seaports: There are 
hundreds and thousands of containers within a seaport. 
Containers are parked and stacked by hundreds of 
employees and countless drivers who deliver 
containers from remote locations. Moreover, containers 
are also unloaded from ships in order to deliver them to 
different customers and locations. Whether a particular 
container has already been unloaded from the ship or 
not, whether a specific container has arrived at the 
seaport for shipment or not, are some of the major 
tasks performed within seaports. But it is quite 
impossible to search for a particular container 
manually. That is why seaports in different countries 
have long been searching for technologies that can 
identify specific containers and that can confirm the 
existence of containers within seaports. One solution to 
the aforementioned problem can be to use RFID tags 
for container identification. Now through the use of our 
serverless search protocols, it will be quite easy to 
search for a particular container by searching the tag. If 
a container’s tag id (in fact ݀݁݁ݏ) is known, then we 
can invoke a search operation with this id within the 
seaport. If the container is present within the seaport 
then according to our protocol, definitely that 
particular tag will reply. Thus we can be sure about the 
container’s existence.  

 
6. Conclusions 

 
RFID systems have been developing continuously 

in selected areas for decades now. It is still a potential 
technology which can be applied in practically all areas 
of daily life. Theoretically the application areas of 
RFID systems are unlimited. In spite of this, secure 
RFID searching has not gathered much attention till 
now. But we firmly believe that it will become very 
important when RFID will be deployed at a larger 
scale. In this paper we introduce various problems 
incurred while performing secure RFID tag search. 
Moreover, we analyzed different attack models of 
which tag searching is severely vulnerable. And finally 
we proposed secure serverless RFID tag searching 
protocols that can safeguard against those major 
attacks without server’s intervention. We also 
discussed a couple of applications of our proposed 
serverless protocol in a real life scenario. We are 
currently working on realizing these scenarios through 
actual implementations.  The application of our 
protocol is not limited to these examples only, but it 
can also be applied to some other real life 
circumstances. 
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