

YA-SRAP: Yet Another Serverless
RFID Authentication Protocol

Sheikh I. Ahamed1, Farzana Rahman1, Endadul Hoque1, Fahim Kawsar2, and Tatsuo Nakajima2
1Ubicomp lab, MSCS Dept., Marquette University, USA
2Dept. of Computer Science, Waseda University, Japan

Contact author: sheikh.ahamed@mu.edu

ABSTRACT
Several threats in RFID systems are obstacles to
intermingle this technology into human lives. On the other
hand ensuring flexible privacy mechanism has been an
enormous challenge due to extremely inadequate
computational storage of typical RFID tags. So in order to
relieve tags from responsibility, privacy protection and
security assurance was guaranteed by central server. In this
paper, we describe serverless, lightweight, forward secured
and untraceable authentication protocol for RFID tags. This
authentication protocol safeguards both tag and reader
against all major attacks without the intervention of server.
Though it is very critical to guarantee untraceability and
scalability simultaneously, here we are proposing a scheme
to make our protocols more scalable via ownership transfer.
To the best of our knowledge this feature is incorporated in
the serverless system for the first time.

General Terms
Reliability, Security, Verification.

Keywords
Scalability; Ownership transfer; Serverless; SRAP.

1. INTRODUCTION
RFID (Radio Frequency Identification) is identified as the
next revolutionary technology that will be utilized by
various ubiquitous services to identify things and people.
However, the expansion of RFID technology is limited
because of security and privacy concerns. Conventional
security primitives cannot be integrated in RFID tags as
they have inadequate computation capabilities with
extremely limited resources. So security and privacy issues
must be addressed before the enormous deployment of
RFID tags in omnipresent environment. That is why
research community devoted themselves in search of
appropriate authentication protocols that will ensure RFID
privacy and security without compromising the cost. One
goal of authentication is to ensure that only authorized
reader can access a tag. As tags are under heavy threats of
adversaries, it is also mandatory to make sure that the tag’s
reply is accurate.

All these security requisites were ensured by a central
database so far. This central server based model has drawn

much consideration and some of the outcomes are reflected
in [13], [3], [12], [2], [9], [1], [10] and [7]. The
fundamental architecture of RFID technology involves a
tag, a reader (or scanning device), and a back end database.
A reader scans a tag (or multiple tags simultaneously) and
relays the information to a database. Other than the back
end database, not even a reader is able to infer any
information from tag’s reply as it is encrypted. Database
returns tag’s data to the reader only after verifying both tag
and reader. Here, only the central server can authenticate
involved reader and tags. Actually in server based system,
central server played an essential role and it was quite easy
to check validity of tags or reader, which is very important
for privacy protection and security issues. Consequently a
malicious reader could hardly obtain precious information
from tags in such a system.

The major drawback of central server based system is that
the readers always have to be connected to the server,
which limits usage of RFID systems in remote locations
where connectivity with server cannot be ensured. Besides
having a single database makes the whole system more
vulnerable to privacy attacks. Central server has knowledge
of all tag secrets and tag information. So if the database is
collapsed by an adversary, entire user community’s privacy
is jeopardized. So a serverless RFID system was proposed
in [11] noticing the shortcomings of server based system.
This paper introduced RFID systems to the world where a
gigantic central server is not a conqueror anymore.
In serverless system, because of the absence of server, a
reader has to identify legitimate tags all by itself. At the
same time, in order to get tag’s data reader has to
authenticate itself to the tag as legitimate.
In this paper, we tried to find solutions to the following
questions: a) how a reader can identify legitimate tags
without the help of server? b) how a tag identifies that the
communicating reader is legitimate? c) how readers
maintain scalability when quantities of tags tend to
increase? Here, we propose a low cost serverless
authentication protocol that provides solutions to the
preceding questions. This protocol can protect user privacy
and it is also secured against major attacks. And all these

characteristics are ensured without a back end server which
makes our proposal suitable for immense application areas.

1.1 Our Major Contributions
Our major contributions in this paper are the following:
I. We propose a serverless, forward secure, reliable,
untraceable mutual authentication protocol which ensures
that tag and reader will authenticate each other.

II. Here, a tag will release its data to only an authenticated
reader and reader can access only its authorized tags.

III. We are proposing ownership transfer in serverless
protocol for the first time. Protocols should be designed so
that after ownership transfer, none but new owner (reader)
can access the tag. Our protocol provides this facility.

IV. In real life practical and scalable RFID protocols need
to be designed as tag’s quantities are assumed to be
increasing. So we propose a way to make our protocol
scalable so that it can keep pace with increasing number of
tags.

V. Our protocol is secured against all the major attacks.
Moreover we considered security of both tags and readers
as both can be attacked by adversaries.

VI. In this paper, we point out some real life application
challenges which require secured, low cost serverless RFID
systems. We also proposed solutions to these challenges
using our proposed protocols.

The remainder of the paper is as follows. Next section
presents relevant related work on RFID privacy protection.
Some major security requirements for RFID protocols are
reflected in section 3. Section 4.1 provides some
preliminaries for the rest of the paper. Section 4.2 and
section 4.3 provides authentication protocols together with
their security analysis. In section 4.4 we propose some
additional features of our protocols. Some real life
challenges and solution are discussed in section 5. And
finally in section 6 some concluding remarks are reported.

2. RELATED WORK
Numbers of techniques have been proposed for ensuring
RFID security and the assortment of authentication
protocols is quite extensive. Moreover, to the best of our
knowledge serverless authentication protocols were
discussed only in [11]. Therefore here we shall refrain from
a prevalent review and focus on those works that are most
directly related to our contribution. Further interested
readers may go through [8], [4] and [5].

Back end database played an essential role in most early
works on RFID security. Researchers came up with highly
secure authentication protocols but authentication was done
mostly by the back end server rather than the reader itself.
Among them Seo et al. [9] proposed a scalable and
untraceable authentication protocol based on hash function.
The most significant contribution of this paper is scalability

and forward secrecy but the drawback is that ownership
transfer requires external intervention. Seo et al. also
proposed another authentication protocol [10] that ensures
high scalability and ownership transfer. The protocol is
based on Proxy and Universal Re-encryption which allows
the back end server to get tag identifier only after a simple
decryption that requires a constant time. This makes it one
of the highest scalable authentication protocols. And it
suffers problem of traceability, Denial-of-Service (DoS)
attack and swapping.

YA-TRAP [12] is a famous authentication protocol that
places little burden on the back end server and uses
monotonically increasing timestamp which makes it secure
against tracking but unsecure against DoS attack. Here, tags
update their timestamp based on a value provided by the
reader. At the same time each tag stores ௠ܶ௔௫,which if
reached, a tag does not answer to the reader’s queries.
Hence an adversary can send to the tag a large enough
timestamp so that it goes beyond ௠ܶ௔௫ which results in DoS
attack. Although the solution to this attack was proposed in
[1], it still lacks forward secrecy.

Another hash chain based RFID identification protocol is
RIPP-FS [3]. Here Mauro et al. proposed that each tag
shares a private symmetric key with the server. After each
successful authentication tag and server both updates the
symmetric key to maintain synchronization. One of the key
features of RIPP-FS protocol is that the reader is free of
“on-the-fly” computation while a tag reading is performed.
It is also resilient to a specific DoS attack where the
adversary attempts to exhaust the hash chain. The main
flaw of this protocol is the formation of an infinite hash
chain.

Another lightweight protocol is OSK [7]. Ohkubo, Suzuki
and Kinoshita proposed that only two hash function ܪ and
 is sufficient to provides indistinguishability and forward ܩ
secrecy, where ܪ is a one way hash function and ܩ has
random oracle. According to this protocol a tag is
initialized with a shared secret ݏ௜ and the back end server
maintains a list of tags (݅݀, ௜). Tag updates its secret keyݏ
after each query according to the following formula ݏ௜ାଵ ൌ
 ௜ሻ. And in response to the query from a reader, tagݏሺܪ
replies ܽ௜ ൌ ௜ሻ. The server on the other hand uses thisݏሺܩ
ܽ௜ to identify the tag by performing a brute force search
through the list of tags. OSK does not ensure high
scalability. In [1], Avoine and Oechslin modified OSK
which removed the scalability problem. Another problem
of OSK is that a malicious reader may easily desynchronize
a tag which results in DoS attack.

In [11], Chiu et al. proposed a serverless authentication
protocol. In this protocol reader maintains an access list ܮ௜
which is used for tag authentication purpose. And each tag
has a secret ݐ which is not shared with anyone. Reader and
tag both know ݂ሺݎ, is reader identifier. Here in ݎ ሻ, whereݐ

response to the query from a reader, tag replies with some
of the bits of ݄ሺ݂ሺݎ, ሻݐ צ ݊௜ צ ௝݊ሻሻ where ݊௜ and ௝݊ are
two random numbers generated by the reader and the tag
respectively and ݄ሺ. ሻ is a one way hash function. Since
only a legitimate tag can generate ݄ሺ݂ሺݎ, ሻݐ צ ݊௜ צ ௝݊ሻሻ, it
works as tag’s certificate to the reader. At the same time tag
queries reader with a question string. Only a legitimate
reader replies with valid answer string which introduces the
reader as an authorized reader to the tag. Tag releases its
data only after realizing that the reader is legitimate. But
here again the reader has to do a lot of computation to find
out ݅݀ of the required tag. But their protocol 2 is not purely
and strongly anonymous as they return tag ݅݀ by
performing XOR operation with hash value for
authentication. Moreover, they didn’t propose any
technique for ownership transfer.

3. SECURITY REQUIREMENTS
RFID technology may bring spontaneous risks because of
the proliferation of RFID tags. Number of research
literatures has dealt with several privacy and security issues
of RFID. In section 2 we have also noticed that some of
them do not guarantee firm security. So here we point out
the security goals that should be guaranteed by a protocol:

Forward secrecy: An adversary compromising a tag will
not be able to identify the previous outputs of the tag.
DoS resiliency: Denial-of-Service (DoS) attack means an
authorized entity is prevented from accessing its authorized
entities. In order to ensure successful communication
between a reader and its authorized tags, it should be
guaranteed that an adversary cannot desynchronize them.
Synchronization: Attacker should not able to update the
key used by the tag or the reader to secure the
communication.
Privacy protection: A tag cannot be distinguished by an
adversary without tampering it and realizing all its stored
information.
Anti-tracking: It is tough for an adversary to track a tag if
it does not have any information about the tag. But the
adversary can track a tag, if the tag replies with a constant
response each time it is queried. So protocols should be
designed such that a tag neither reveals its ݅݀ nor replies
with constant response.

Anti-cloning: In order to clone a tag, an adversary needs to
know the secret key shared by the tag with its authorized
reader. So, to be secured against cloning attack, protocols
should never reveal the shared secret key.

Key secrecy: Unless the tag is tampered, an adversary
cannot identify the secret key used by the reader or the tag
in secure communication.
Anonymity: Guaranteeing anonymity means an adversary
will never be able to comprehend the ݅݀ of a tag by

listening to the communication between the tag and the
reader.
Not susceptible to replay attack: Security must be ensured
against replay attacks so that an adversary cannot
impersonate a legitimate tag by replaying an eavesdropped
message.
Lightweight: Protocols should be lightweight, i.e. they
should be free from heavyweight computation.

4. AUTHENTICATION PROTOCOLS
We present two slightly different authentication protocols.
In both protocols the tag identifier is not passed on to the
reader. But the tag sends certifying information to the
reader in such a way that only the authorized reader is able
to find out the identifier of the tag.

4.1 Notation and Assumption
We refer an RFID reader as ܴ. Each ܴ has a unique
identifier ݎ and a contact list ࣦ . We will describe the
contents of ࣦ later. ܴ obtains ݎ and ࣦ from a trusted
center, ܶܥ, after authenticating itself. The ܶܥ is a trusted
party who deploys all the RFID tags and authorizes any
RFID reader. For the sake of simplicity we assume that ܴ
and ܶܥ communicate through a secure channel. On the
other hand, each RFID tag ܶ contains a unique identifier ݅݀
and a unique secret ݐ in its nonvolatile memory.

Subscripts are used to describe a particular ܴ or ܶ and their
respective variables. Thus a particular RFID reader ݅ will
be ܴ௜ with an identifier ݎ௜ and contact list ࣦ௜ stored in its
nonvolatile memory. An RFID tag ݆ is ௝ܶ having a secret ݐ௝.
The contact list ࣦ௜ contains information about the tags
which ܴ௜ has access to. And the information about each tag
comprises a seed and the id of the tag. If ܴ௜ is authorized to
access tags ଵܶ,൉ ൉ ൉, ௡ܶ, ࣦ௜ will take the following shape
after authenticating itself to ܶܥ,

 ࣦ௜ ൌ ൝
:ଵ݀݁݁ݏ ݅݀ଵ
··· ׷ ···

:௡݀݁݁ݏ ݅݀௡

ൡ

where, for any tag ௝ܶ and 1 ൑ ݆ ൑ ݁݁ݏ ,݊ ௝݀ is a seed used
by ܴ௜ to communicate with ௝ܶ and ݅ ௝݀is ௝ܶ’s identifier.
݁݁ݏ ௝݀ is initialized by ݁݁ݏ ௝݀ ൌ ݂൫ݎ௜, ௝൯ݐ ൌ ݄൫ݎ௜ צ ௝൯ whereݐ
݄ሺ. ሻ is a one way hash function and צ represents
concatenate. Note that ܴ௜ does not know the tag secret ݐ௝.
ܴ௜ only knows the outcome of the function ݂൫ݎ௜, ௝൯ asݐ
݁݁ݏ ௝݀. The initial ݁݁ݏ ௝݀ is computed by ܶܥ and stored in
ܴ௜.

On the contrary, the tag ௝ܶ will contain only one seed for its
only one authorized reader ܴ௜. While deploying the tag ௝ܶ
by ܶܥ, ௝ܶ will get ݂൫ݎ௜, ௝൯ݐ ൌ ݄൫ݎ௜ צ .ܥܶ ೕ from்݀݁݁ݏ ௝൯ asݐ

௝ܶ stores ்݀݁݁ݏೕ in its nonvolatile memory. We also assume
that the ܶܥ cannot be compromised. Moreover our
assumptions also include that all the readers once

authenticated by the ܶܥ are trusted. And we denote an
adversary as ߷.

All readers and tags have knowledge of a pseudorandom
number generator ࣪ሺ. ሻ and a function ࣧሺ. ሻ. ࣪ሺ. ሻ takes a
seed as an argument and outputs a pseudorandom number
according to its distribution. ࣧሺ. ሻ is used by all readers
and tags to update the seed of the pseudorandom number
generator by passing the current seed as input. We assume
ࣧሺ. ሻ as an irreversible one way hash function. Therefore a
current seed cannot be linked to its previous one.

4.2 Authentication Protocol 1
(1) ܴ௜ ՜ ௝ܶ : ݐݏ݁ݑݍ݁ݎ
(2) ௝ܶ ׷ ௝݊ ൌ ࣪ ቀ்݀݁݁ݏೕቁ
(3) ܴ௜ ՚ ௝ܶ ׷ ௝݊
(4) ܴ௜ ׷ ݊௜ ൌ ݀݊ܽݎ
(5) for all ݉ from 1 to ݊

 //run through list ࣦ௜
(6) Let ݊௠ ൌ ࣪ሺ݀݁݁ݏ௠ሻ
(7) if ሺ ݊௠ ൌൌ ௝݊ሻ then
(8) Let ݏ ൌ ࣧሺ݀݁݁ݏ௠ሻ
(9) ݊௜ ൌ ࣪ሺݏሻ
௠݀݁݁ݏ (10) ൌ ࣧሺݏሻ
(11) ܴ௜ ՜ ௝ܶ ׷ ݊௜
(12) ܶ ௝ ׷ Let ݇ ൌ ࣧ ቀ்݀݁݁ݏೕቁ
(13) Let ܽ ൌ ࣪ሺ݇ሻ
(14) if ሺܽ ൌൌ ݊௜ሻ then
ೕ்݀݁݁ݏ (15) ൌ ࣧሺ݇ሻ

4.2.1 Protocol Description
At the beginning the reader ܴ௜ transmits a ݐݏ݁ݑݍ݁ݎ to the
tag ௝ܶ. To authenticate itself to ܴ௜, ௝ܶ uses ்݀݁݁ݏೕ to
generate ௝݊ which is pseudorandom number. Now

௝ܶ transmits ௝݊ to the reader. Only a legitimate tag can
accurately generate ௝݊. At the reader side, ݊௜ is initialized
with a ݀݊ܽݎ number. For each tag ௠ܶ, ܴ௜ generates next
pseudorandom number as well as compares each of the
generated number with ௝݊ received from ௝ܶ. Note that ‘//’
denotes in inline comments. Each pseudorandom number is
based on the corresponding ݀݁݁ݏ௠ of tag ௠ܶ which the
reader obtains from its ࣦ௜. ܴ௜ authenticates ௝ܶ if there is a
match with ௝݊. Only then the next pseudorandom number
for that tag is computed after updating the corresponding
seed. The updated seed is again updated and stored in the
list ࣦ௜. Finally the reader ܴ௜ transmits ݊௜ to the tag ௝ܶ. If a
match is found, then ݊௜ will be the produced next
pseudorandom number. Otherwise, ݊௜ contains ݀݊ܽݎ. Now

௝ܶ generates next pseudorandom number with the updated
 ೕ and compares the number with ݊௜ sent by ܴ௜. ௝்ܶ݀݁݁ݏ
authenticates ܴ௜ only if a match occurs. And this match
causes ௝ܶ to update the already updated seed again and
store in ்݀݁݁ݏೕ. In this way both parties have same seed

after a successful authentication which guarantees
synchronization.

4.2.2 Problem of Protocol 1
This protocol has some major security problems that are
discussed below:

Tracking: Here, ߷ tries to track ௝ܶ over time. ߷ succeeds if
it is able to distinguish ௝ܶ from other RFID tags. ߷ usually
performs this attack by repeatedly querying ௝ܶ. Those
queries will yield consistent reply. This consistent reply
becomes a signature of ௝ܶ. In protocol 1, if ߷ queries ௝ܶ
contiguously for at least two times, ௝ܶ will reply with the
same answer. We assume that no successful authentication
is done in the mean time. As ௝ܶ will use the same seed to
produce pseudorandom number, the generated numbers
will be same. Therefore ߷ will be able to track ௝ܶ. Thus
protocol 1 is not protected against tracking.

De-synchronization: Protocol 1 suffers from de-
synchronization problem which is caused by replay attack.
An adversary ߷ is able to observe all the interaction
between ܴ௜ and ௝ܶ. In other words, ߷ can eavesdrop any
challenge-response. Now, by querying ௝ܶ, ߷ gets a reply
with valid ௝݊. Next time whenever ܴ௜ tries to access ௝ܶ, ߷
impersonates ௝ܶ and replies with the learned valid ௝ܶ to
attack ܴ௜. As ௝݊ is valid, ܴ௜ finds a match and updates the
seed in its list. Whereas ௝ܶ is totally unaware of the
authentication between ܴ௜ and ߷. Hence, the seeds become
de-synchronized between ܴ௜ and ௝ܶ. As a result, ܴ௜ can
never authenticate ௝ܶ in future transactions.

4.3 Authentication protocol 2
(1) ܴ௜ ՜ ௝ܶ : ݐݏ݁ݑݍ݁ݎ, ௜݀݊ܽݎ

(2) ௝ܶ ׷ ௝݊ ൌ ࣪ ൬்݀݁݁ݏೕ ْ ൫݀݊ܽݎ௜ צ

݊ܽݎ ௝݀ሻቁ
(3) ܴ௜ ՚ ௝ܶ ׷ ௝݊ , ݊ܽݎ ௝݀
(4) ܴ௜ ׷ ݊௜ ൌ ݀݊ܽݎ
(5) for all ݉ from 1 to ݊
 //run through list ࣦ௜
(6) Let ݊௠ ൌ ࣪ ቀ݀݁݁ݏ௠ ْ
 ൫݀݊ܽݎ௜ צ
݊ܽݎ ௝݀ሻቁ
(7) if ሺ ݊௠ ൌൌ ௝݊ሻ then
(8) Let ݏ ൌ ࣧሺ݀݁݁ݏ௠ሻ
(9) ݊௜ ൌ ࣪ሺݏሻ
௠݀݁݁ݏ (10) ൌ ࣧሺݏሻ
(11) ܴ௜ ՜ ௝ܶ ׷ ݊௜
(12) ௝ܶ ׷ Let ݇ ൌ ࣧ ቀ்݀݁݁ݏೕቁ
(13) Let ܽ ൌ ࣪ሺ݇ሻ
(14) if ሺܽ ൌൌ ݊௜ሻ then
ೕ்݀݁݁ݏ (15) ൌ ࣧሺ݇ሻ

(16) else
 ݀݁ݖ݅ݎ݋݄ݐݑܽ ݐ݋݊ ݏ݅ ݎܴ݁݀ܽ݁ (17)
 ݕݎܽݏݎ݁ݒ݀ܽ ݊ܽ ݏ݅ ݎ݋

4.3.1 Protocol Description
Protocol 2 is improved version of protocol 1. At the
beginning, ܴ௜ transmits a ݐݏ݁ݑݍ݁ݎ and ݀݊ܽݎ௜ to Tag ௝ܶ. ௝ܶ
generates ௝݊ by using ்݀݁݁ݏೕ, ݀݊ܽݎ௜ and a random number
݊ܽݎ ௝݀ generated by itself. After receiving ݊௜ and ݊ܽݎ ௝݀, ܴ௜
computes ࣪ ቀ݀݁݁ݏ௠ ْ ൫݀݊ܽݎ௜ צ ݊ܽݎ ௝݀൯ቁ for each tag ௠ܶ
in the list ࣦ௜, where 1 ൑ ݉ ൑ ݊. Here ‘//’ denotes inline
comment. If ܴ௜ finds a match, it changes the value of ݊௜
from ݀݊ܽݎ to a pseudorandom number produced by ࣪ሺ. ሻ
and updates the seed in ࣦ௜. Then ܴ௜ sends ݊௜ to ௝ܶ. If a
match does not occur, ܴ௜ sends ݊௜ with the value ݀݊ܽݎ and
concludes that it is a fake tag. Now, ௝ܶ generates the next
pseudorandom number and compares it with ݊௜. If the two
numbers are same, ௝ܶ updates its seed and concludes ܴ௜ as
the authorized reader. But in case of a mismatch, ௝ܶ decides
that the reader is not authorized to access it or the reader is
indeed an adversary. Here a major improvement is to be
noticed that both the reader and the tag update their seeds
only when they are sure about the validity of the opposite
party.

4.3.2 Why Protocol 2?
The privacy and security problems of protocol 1 exhibit the
necessity of a new protocol that can protect reader or tag
against those attacks. Besides overcoming the problems of
protocol 1, protocol 2 is secure against other attacks that we
will discuss elaborately in section 4.3.3. Here we just
explain how protocol 2 is secure against the problems of
protocol 1.

Tracking: By incorporating a ݀݊ܽݎ௜ and ݊ܽݎ ௝݀, protocol 2
is secured against tracking. By exploiting the power of
eavesdrop-ing, an adversary ߷ can listen all the messages
between ܴ௜ and ௝ܶ. ߷ fails to track ௝ܶ by replaying same
 ௜ learned from any previous challenge-response݀݊ܽݎ
because ௝ܶ replies with different response, due to ݊ܽݎ ௝݀,
each time it is queried.

De-synchronization: In protocol 2 seeds are updated when
both the reader and the tag are certain about their validity.
After listening to all the messages between ܴ௜ and ௝ܶ, ߷
queries ௝ܶ with a ݀݊ܽݎ and ௝ܶ replies with a ௝݊. Whenever
ܴ௜ again tries to access ௝ܶ, ߷ impersonates ௝ܶ by replying
with the learned ௝݊. To make itself legitimate to ܴ௜, ߷ has to
use either of the two particular values for ݀݊ܽݎ while
communicating with ௝ܶ to collect ௝݊. One of them is correct
next ݀݊ܽݎ௜ that ܴ௜ will generate in the transaction in which
߷ tries to imitate ௝ܶ. And the other value is a previous
 ௜ listened by ߷ before. Unfortunately, guessing of a݀݊ܽݎ
random number generated by one party is impossible for
other party. On the other hand, by using previous ݀݊ܽݎ௜, ߷

fails since ܴ௜ will not use the same ݀݊ܽݎ௜ in future again.
Therefore, ߷ attempts in vain to break the synchronization
of seeds between a legitimate ܴ௜ and ௝ܶ.

4.3.3 Security Analysis of Protocol 2
Cloning: Here ߷ queries ௝ܶ several times and places its
response in a fake tag. Let this fake tag be ఫܶ෡ . ߷ wants to
counterfeit a legitimate tag and it becomes successful if it
can fool a legitimate reader ܴ௜. Under our protocol
whenever the adversary queries ௝ܶ , it gets a different
response because of ݀݊ܽݎ௜ and ݊ܽݎ ௝݀. Now if ߷ places this
response in ఫܶ෡ it will never be able to fool an honest ܴ௜.
When ఫܶ෡ is queried by honest ܴ௜, ఫܶ෡ will reply with a value
that will not match with the one generated by original ௝ܶ .
This is because ܴ௜ will now have a different ݀݊ܽݎ௜.
Moreover, ఫܶ෡ cannot generate the actual response as it does
not know the current seed stored in the tag. Guessing the
response will not help either as it has a very low
probability. Next we consider the case when ߷ tries to clone
a tag by eavesdropping between a tag and reader.

Eavesdropping: Here ߷ eavesdrops the communication
between ܴ௜ and ௝ܶ and later uses these to create a fake
reader ܴప෡ or a fake tag ఫܶ෡ . Under our protocol this attack is
not possible because after a successful communication
between ܴ௜ and ௝ܶ, both have changed their seeds. ߷ will
learn ݀݊ܽݎ௜ and ݊ܽݎ ௝݀ from the whole communication.

But the response ࣪ ൬்݀݁݁ݏೕ ْ ൫݀݊ܽݎ௜ צ ݊ܽݎ ௝݀൯൰ of a tag

requires random numbers generated by two parties. But ߷
impersonating ܴ௜ or ௝ܶ cannot control random number
generated by the other party. Even knowing correct ݀݊ܽݎ௜
and ݊ܽݎ ௝݀ is useless as ߷ needs correct seed to generate
correct response.

Suppose, ߷ impersonates tag ௝ܶ which we name ఫܶ෡ and it
wants to fool an honest reader ܴ௜ with which ௝ܶ had
communicated recently. Now ఫܶ෡ will not be able to fool
ܴ௜ as ܴ௜ will definitely provide with a different ݀݊ܽݎప෫ . And

ఫܶ෡ cannot generate ࣪ ൬்݀݁݁ݏೕ ْ ൫ ݀݊ܽݎప෫ צ ݊ܽݎ ௝݀൯൰ as it

does not know the ்݀݁݁ݏೕ. Even if ఫܶ෡ replays ࣪ ൬்݀݁݁ݏೕ ْ

൫݀݊ܽݎ௜ צ ݊ܽݎ ௝݀൯ቁ, reader will easily identify that it is a
fake tag. Therefore we can say that as every
communication involves random number generated by two
parties and current seed, ߷ cannot launch a replay attack
using pervious values.

Physical attack: Physical attack means ߷ can compromise
either tag or reader. We will consider each case. We will
also assume that once ߷ compromises ܴ௜ or ௝ܶ it will learn
everything about the tag or reader.

A. ࣙ compromises ࢏ࡾ: When adversary compromises a
reader ܴ௜ , adversary will know reader’s contact list ࣦ௜ and
id ݎ௜. It can now impersonate ܴ௜ and communicate with ௝ܶ.
߷ can counterfeit a tag ௝ܶ residing in its contact list ࣦ௜,
which we will name ఫܶ෡ . Adversary will be successful if ఫܶ෡
can fool another legitimate reader ܴ௫. But under our
protocol ௝ܶis authorized to only ܴ௜. So, ఫܶ෡ cannot fool ܴ௫ by
learning only ݁݁ݏ ௝݀.

B. ࣙ compromises ࢐ࢀ: In this case, adversary compromises
tag ௝ܶ and learns ்݀݁݁ݏೕ that it shares with reader ܴ௜. From
this information ߷ will want to create a fake tag ௫ܶ which
will communicate successfully with an honest reader ܴ௜,
where ௫ܶ resides in contact list ࣦ௜. Each RFID tag shares a
seed with its authorized reader. So ௫ܶ will share a different
seed with ܴ௜ which is not known by ௝ܶ. So even if ߷ knows
 ೕ, it cannot derive the seed shared between ܴ௜ and ௫்ܶ݀݁݁ݏ
and therefore ߷ cannot create a fake tag to fool ܴ௜.

Denial of service (DoS): In this case, ߷ does not want to
derive any information or tries to impersonate. Its main
target is to ensure that a reader cannot access its authorized
tags. This is a severe problem where back end database
shares a secret key with tags. And the key has to be
synchronized for successful communication. Our protocol
eliminates need of a back end server. So synchronization
between server and tag is not obligatory. Moreover in our
protocol both tag and reader updates their shared seed only
after becoming certain of the other end’s validity. Under
our protocol an adversary can never proof himself as
legitimate and thus he can never desynchronize tag or
reader.

Privacy protection: People carrying various tagged item do
not want to hamper their privacy. It means that tagged
object should reveal their ID to none but authorized reader,
otherwise malicious readers may cause several
vulnerabilities to owner’s day to day life. Our protocol
protects user’s privacy strongly. Since under our protocol a
tag never send it’s ݅݀ to anyone, not even reader. It sends
its reply in disguise so that only an authorized reader can
identify a tag.

Anonymity: The problem of leaking information about user
possessions occurs if anonymity is not ensured. To ensure
݅݀ anonymity, a tag should never output it’s ݅݀ directly nor
should reply with constant data. Our protocol is totally
anonymous in a sense that a tag never replies with its ݅݀,
not even by encrypting it for security. Rather a tag replies
in a special format so that only an authorized reader is able
to find out tag’s ݅݀ from its contact list ࣦ௜.

Key secrecy: Our protocol ensures key secrecy as both tag
and reader uses a shared seed to secure the communication.
This seed is updated in both sides only after successful
authentication using a one way hash function. So an

adversary ߷ can never recover seed listening to the
communication between a tag and reader.

Forward secrecy: Forward secrecy means if anyhow an
adversary compromises a tag, it will not reveal any data
previously transmitted by that tag. It means that if ߷
physically tampers ௝ܶ and learns ்݀݁݁ݏೕshared with ܴ௜, ߷
will not be able to trace the data back through past events in
which they were involved. Our protocol ensures strong
forward secrecy as seed update function ࣧሺ. ሻ is an
irreversible one way hash function. So ߷ tampering

௝ܶ cannot know former outputs based on former seed as it
cannot derive previous seed from the current seed .

Lightweight: Our authentication protocol is lightweight and
low cost in a sense that they require only random number
generator, concatenation and hash function generation
capability.

4.4 Additional Features
Ownership transfer: Ownership transfer ensures that an
authorized reader renounces the authority of a tag and a
new reader gets the authority to access the tag. In other
words, a tagged object will continue to be authenticated by
only a new authorized reader. However the old authorized
reader is no more accredited to access it. Suppose ܴ௜ is the
current owner of tag ௝ܶ. After transferring ownership to
another reader ܴ௫, ௝ܶ responds to ܴ௫ in the same way as it
did to ܴ௜. From now on ܴ௜ has no rights to access ௝ܶ.
Ownership transfer is a prominent property that facilitates
many RFID applications. As far as we know ownership
transfer issue is dealt with only in [6] and [9]. In both of
them back end server played a significant role. To the best
of our knowledge, we are proposing ownership transfer in
serverless system for the first time. Based on our protocol,
two methods of ownership transfer are proposed next.

A. ࡯ࢀ based ownership transfer: ܶܥ (Trusted Center) has
all the responsibility regarding every type of management.
A reader gets its contact list ࣦ from ܶܥ using a secure
channel at the beginning of its operation. Whenever a
reader faces the need to transfer the ownership of a
particular tag to other reader, it informs the ܶܥ about the
change in access policy and ownership information of that
tag. Ownership information comprises the identifier and the
corresponding seed for the particular tag stored in the
reader’s list. ܶܥ will now authenticate new owner (other
reader) and authorize it by updating the contact list of new
owner with ownership information. On the other hand, ܶܥ
will also delete the ownership information of that tag from
the old owner's contact list. For example, ݅ ௝݀ and current
݁݁ݏ ௝݀ for tag ௝ܶ will suffice as ownership information. Old
owner transmits this ownership information to ܶܥ at the
time of informing about a change in ownership of ௝ܶ.

B. Serverless ownership transfer: Previous method is not a
feasible solution of transferring ownership as it requires

intervention of ܶܥ for every ownership transfer. So we
remove the necessity of ܶܥ in transferring ownership by
introducing serverless ownership transfer. The salient
feature of this method is “reader - reader secure
communication”. At the time of ownership transfer, old
owner transmits ݅ ௝݀ and current ݁݁ݏ ௝݀ for the particular tag

௝ܶ to new owner and then simply eradicates owner-ship
information for that tag from the non-volatile memory of
the old owner. Therefore old owner has no valid seed to
access ௝ܶ while the seed for the new owner and tag ௝ܶ still
remain synchronized.

Scalability: Scalability means that a reader can find a tag’s
identifier with constant computational time regardless of
the number of tags that is owned by it. So one solution of
ensuring scalability can be - each reader will own moderate
number of tags which will make the search scalable. If the
number of tags in a reader is ݌, the time complexity of
search operation will be ܱሺ݌ሻ, where to make the search
scalable ݌ needs to be small enough.

But Juels and Weis proved in [5] that improved randomized
hash lock offer strong privacy and security at the cost of
poor scalability. In fact the authors in [5] proposed that in
case of protocols that protect privacy using symmetric key
cryptography, reader or server has to perform exhaustive
search to find out a tag’s identity. They also advocated the
protocols that are more rational but weaker in privacy
protection. Hence we entirely comply with their
observation and propose a more practical way of ensuring
scalability with the help of ownership transfer.

Our proposal is that each reader will have a threshold ߠ.
Here ߠ is the maximum number of tags’ ownership
information that can reside in a reader to ensure scalability.
When a reader's contact list surpasses threshold ߠ, the
reader called as overloaded reader wishes to reduce its
burden. So if the overloaded reader has a co-operative
reader (not an adversary) within its radio range and if the
co-operative reader has enough memory to accommodate
the overloaded reader's load, the overloaded reader will
transfer some of its burden to the other one. Therefore by
only transferring ownership to a co-operative reader, an
overloaded reader's contact list may again become scalable.

5. ILLUSTRATIVE EXAMPLE
The major strength of a server less protocol is support for
mobile and outdoor applications where the existences of a
dedicated server or a communication channel are often
impractical. In this section, we present four such
application scenarios and contemplate the effectiveness of
our proposed protocol.

a) Container recognition in off-site location: Let us
consider a case in which a company uses RFID system for
employee identification, human authentication while
entering into safety regions, document management,
product maintenance and etc. All these services are easily

ensured with central server based RFID system. But this
company faces problem when they have to collect their
ordered raw material containers from other companies that
belong to the off-site locations. This off site location has no
connection with the central server. Normally truck drivers
are dispatched to the other companies to collect container
deliveries. But it is a very usual case that people employed
in this job does not have the capability to ensure that the
supplied containers are the correct one that were ordered by
his company. Moreover it is not possible to check each
container individually because obviously there are
enormous numbers of containers. As a result, containers
being unchecked, sometimes wrong material are delivered
to the warehouse. This causes a loss for the particular
manufacturing company. Now this problem can be easily
eliminated by using our serverless protocol provided that
the containers are tagged objects. The truck driver may
have with him his personal PDA, which can act as a reader.
Reaching the offsite location this reader can easily
authenticate the containers and find out whether they are
the ordered containers or not. This can be easily done as
under our protocol, readers can authenticate and
communicate with tags without the intervention of central
server.

b) School children tracking while away from school:
School children are often taken at various education tours
in different places. Tracking children is already possible
with the existing server based RFID systems. But tracking
children in picnic spots or places where children are taken
on education tours is difficult because of the unavailability
of the central database. But our protocol can perform here
successfully as it can authenticate and identify any children
without the help of central database. Tags are attached to
the identity card of the children and the PDAs of the
teachers can act as a reader. Then by using our protocol
teachers can easily track and identify children or even find
missing children.

c) Environmental monitoring: The use of RFID systems in
conjunction with highly miniaturized sensors will make it
possible to observe diverse environmental phenomena.
Environmental scientists perform diverse research on
environment by attaching tags with animals and releasing
them in the wild again. These attached tags together with
our serverless protocol can help scientists on their research.
Moreover, sometimes it becomes necessary to regain a
tagged animal from the wild for research purpose. In this
case our protocol can be very useful as readers can track or
locate the tagged animal in the wild without the need of
server.

d) Authenticating smart objects usage at construction site:
Several research groups have been investigating
applications of smart objects in outdoor working sites
where regular tools are augmented for supplementary
services. For example: in [14], construction drill machines

are augmented so that usage history can be monitored and
usage safety can be ensured by appropriate alerts. Such
augmentations have direct implications in the business and
logistic processes of the companies since they use
performance record of the workers. Our proposed protocol
can be applied to such scenarios to authenticate the workers
to use the smart tools and to enable secure logging of
monitoring data locally which ensures their privacy

6. CONCLUSION
One of the major challenges for RFID technology is to
provide benefits without negotiating privacy and security.
Many solutions have been recommended but almost as
many ways have been found to crack them. While there are
several existing methods, none of them provide a complete
solution. In this paper we suggested serverless
authentication protocols which ensure that both tag and
reader are authenticated at the time of communication. Our
authentication protocol is lightweight, forward secured and
shielded against some major attacks like: tracking, cloning,
eavesdropping, physical tampering, and DoS attack.
Moreover we also suggested ownership transfer mechanism
which facilitates our protocol to be scalable. To the best of
our knowledge, this is the first contribution in the literature
that enables serverless protocols to perform ownership
transfer. We also discussed application of our proposed
serverless protocol in some real life examples. The
application of our protocol is not limited to these examples
only, but it can also be applied to some other real life
circumstances.

One future avenue of our work is applying the proposed
protocol in real life applications. In section 5, we have
provided several outdoor application scenarios where RFID
in conjunction with other smart objects are contemplated
for effective service provisions. Our proposed
authentication protocol can seamlessly integrate into these
services to make them more secure and protected. We are
currently working on applying our protocol in multiple
application scenarios and hope to present some exciting
results in near future.

7. REFERENCES
[1] Avoine, G., and Oechslin, P. A Scalable and Provably Secure

Hash Based RFID Protocol. In International Workshop on
Pervasive Computing and Communication Security (PerSec
’05), IEEE, IEEE Computer Society Press, Kauai Island,
Hawaii, USA, March 2005, pp. 110–114.

[2] Burmester, M., Le, T. v., and Medeiros, B. d. Provably
Secure Ubiquitous Systems: Universally Composable RFID
Authentication Protocols. In Conference on Security and
Privacy for Emerging Areas in Communication Networks
(SecureComm), IEEE, Baltimore, Maryland, USA, August
2006.

[3] Conti, M., Pietro, R. D., Mancini, L. V., and Spognardi, A.
RIPP-FS: an RFID Identification, Privacy Preserving
Protocol with Forward Secrecy. In International Workshop

on Pervasive Computing and Communication Security
(PerSec ‘07), IEEE, IEEE Computer Society Press, New
York, USA, March 2007, pp. 229-234.

[4] Juels, A. RFID Security and Privacy: A Research Survey.
RSA Laboratories, September 2005.

[5] Juels, A., and Weis, S. Defining Strong Privacy for RFID.
Cryptology ePrint Archive, Report 2006/137, IACR, April
2006.

[6] Molnar, D., Soppera, A., and Wagner, D. A Scalable,
Delegatable Pseudonym Protocol Enabling Owner-ship
Transfer of RFID Tags. In Proceedings of Selected Areas in
Cryptography (SAC 2005), 3897, Springer-Verlag, Kingston,
Canada, August 2005, pp. 276-290.

[7] Ohkubo, M., Suzuki, K., and Kinoshita, S. Cryptographic
Approach to “Privacy-Friendly” Tags. In RFID Privacy
Workshop, MIT, MA, USA, November 2003.

[8] Rieback, M., Crispo, B., and Tanenbaum, A. Is Your Cat
Infected with a Computer Virus? In Proceedings of the
Fourth Annual IEEE International Conference on Pervasive
Computing and Communications (PerCom’06), Pisa, Italy,
IEEE, IEEE Computer Society Press, March 2006.

[9] Seo, Y., and Kim, K. Scalable and Untraceable
Authentication Protocol for RFID. In International
Workshop on Security in Ubiquitous Computing Systems
(Secubiq ’06), Springer-Verlag , Seoul, Korea, August 2006.

[10] Seo, Y., Lee, H., and Kim, K. A Lightweight Authentication
Protocol Based on Universal Re-encryption of RFID Tags.
2006.

[11] Tan, C. C., Sheng, B., and Li, Q. Severless Search and
Authentication Protocols for RFID. In Proceedings of the
Fifth Annual IEEE International Conference on Pervasive
Computing and Communications (PerCom ‘07), New York,
USA, March 2007.

[12] Tsudik, G. YA-TRAP: Yet another Trivial RFID
Authentication Protocol. In International Conference on
Pervasive Computing and Communications (PerCom ’06),
IEEE, IEEE Computer Society Press, Pisa, Italy, March
2006.

[13] Vajda, I., and Butty´an, L. Lightweight Authentication
Protocols for Low-Cost RFID Tags. In Second Workshop on
Security in Ubiquitous Computing (Ubicomp ‘03), Seattle,
WA, USA, October 2003.

[14] G. Kortuem, N. Davies, C. Efstratiou, K. Kinder, M.I.
White, R. Hooper, J. Finney, L. Ball, J. Busby, and D.
Alford, “Sensor networks or smart artifacts? an exploration
of organizational issues of an industrial health and safety
monitoring system,” 9th International Conference on
Ubiquitous Computing (UbiComp 2007), 2007.

