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ABSTRACT 
Several threats in RFID systems are obstacles to 
intermingle this technology into human lives. On the other 
hand ensuring flexible privacy mechanism has been an 
enormous challenge due to extremely inadequate 
computational storage of typical RFID tags. So in order to 
relieve tags from responsibility, privacy protection and 
security assurance was guaranteed by central server. In this 
paper, we describe serverless, lightweight, forward secured 
and untraceable authentication protocol for RFID tags. This 
authentication protocol safeguards both tag and reader 
against all major attacks without the intervention of server. 
Though it is very critical to guarantee untraceability and 
scalability simultaneously, here we are proposing a scheme 
to make our protocols more scalable via ownership transfer. 
To the best of our knowledge this feature is incorporated in 
the serverless system for the first time.  

General Terms 
Reliability, Security, Verification. 
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1. INTRODUCTION 
RFID (Radio Frequency Identification) is identified as the 
next revolutionary technology that will be utilized by 
various ubiquitous services to identify things and people. 
However, the expansion of RFID technology is limited 
because of security and privacy concerns. Conventional 
security primitives cannot be integrated in RFID tags as 
they have inadequate computation capabilities with 
extremely limited resources. So security and privacy issues 
must be addressed before the enormous deployment of 
RFID tags in omnipresent environment. That is why 
research community devoted themselves in search of 
appropriate authentication protocols that will ensure RFID 
privacy and security without compromising the cost. One 
goal of authentication is to ensure that only authorized 
reader can access a tag. As tags are under heavy threats of 
adversaries, it is also mandatory to make sure that the tag’s 
reply is accurate.  

All these security requisites were ensured by a central 
database so far. This central server based model has drawn 

much consideration and some of the outcomes are reflected 
in [13], [3], [12], [2], [9], [1], [10] and [7]. The 
fundamental architecture of RFID technology involves a 
tag, a reader (or scanning device), and a back end database. 
A reader scans a tag (or multiple tags simultaneously) and 
relays the information to a database. Other than the back 
end database, not even a reader is able to infer any 
information from tag’s reply as it is encrypted. Database 
returns tag’s data to the reader only after verifying both tag 
and reader. Here, only the central server can authenticate 
involved reader and tags. Actually in server based system, 
central server played an essential role and it was quite easy 
to check validity of tags or reader, which is very important 
for privacy protection and security issues. Consequently a 
malicious reader could hardly obtain precious information 
from tags in such a system.  

The major drawback of central server based system is that 
the readers always have to be connected to the server, 
which limits usage of RFID systems in remote locations 
where connectivity with server cannot be ensured. Besides 
having a single database makes the whole system more 
vulnerable to privacy attacks. Central server has knowledge 
of all tag secrets and tag information. So if the database is 
collapsed by an adversary, entire user community’s privacy 
is jeopardized. So a serverless RFID system was proposed 
in [11] noticing the shortcomings of server based system. 
This paper introduced RFID systems to the world where a 
gigantic central server is not a conqueror anymore.  
In serverless system, because of the absence of server, a 
reader has to identify legitimate tags all by itself. At the 
same time, in order to get tag’s data reader has to 
authenticate itself to the tag as legitimate.   
In this paper, we tried to find solutions to the following 
questions: a) how a reader can identify legitimate tags 
without the help of server? b) how a tag identifies that the 
communicating reader is legitimate? c) how readers 
maintain scalability when quantities of tags tend to 
increase? Here, we propose a low cost serverless 
authentication protocol that provides solutions to the 
preceding questions. This protocol can protect user privacy 
and it is also secured against major attacks. And all these 



  

characteristics are ensured without a back end server which 
makes our proposal suitable for immense application areas. 

1.1 Our Major Contributions 
Our major contributions in this paper are the following: 
I. We propose a serverless, forward secure, reliable, 
untraceable mutual authentication protocol which ensures 
that tag and reader will authenticate each other.  

II. Here, a tag will release its data to only an authenticated 
reader and reader can access only its authorized tags.    

III. We are proposing ownership transfer in serverless 
protocol for the first time. Protocols should be designed so 
that after ownership transfer, none but new owner (reader) 
can access the tag. Our protocol provides this facility. 

IV. In real life practical and scalable RFID protocols need 
to be designed as tag’s quantities are assumed to be 
increasing. So we propose a way to make our protocol 
scalable so that it can keep pace with increasing number of 
tags. 

V. Our protocol is secured against all the major attacks. 
Moreover we considered security of both tags and readers 
as both can be attacked by adversaries. 

VI. In this paper, we point out some real life application 
challenges which require secured, low cost serverless RFID 
systems.  We also proposed solutions to these challenges 
using our proposed protocols. 

The remainder of the paper is as follows. Next section 
presents relevant related work on RFID privacy protection. 
Some major security requirements for RFID protocols are 
reflected in section 3. Section 4.1 provides some 
preliminaries for the rest of the paper. Section 4.2 and 
section 4.3 provides authentication protocols together with 
their security analysis. In section 4.4 we propose some 
additional features of our protocols. Some real life 
challenges and solution are discussed in section 5. And 
finally in section 6 some concluding remarks are reported. 

2. RELATED WORK 
Numbers of techniques have been proposed for ensuring 
RFID security and the assortment of authentication 
protocols is quite extensive. Moreover, to the best of our 
knowledge serverless authentication protocols were 
discussed only in [11]. Therefore here we shall refrain from 
a prevalent review and focus on those works that are most 
directly related to our contribution. Further interested 
readers may go through [8], [4] and [5]. 

Back end database played an essential role in most early 
works on RFID security. Researchers came up with highly 
secure authentication protocols but authentication was done 
mostly by the back end server rather than the reader itself. 
Among them Seo et al. [9] proposed a scalable and 
untraceable authentication protocol based on hash function. 
The most significant contribution of this paper is scalability 

and forward secrecy but the drawback is that ownership 
transfer requires external intervention. Seo et al. also 
proposed another authentication protocol [10] that ensures 
high scalability and ownership transfer. The protocol is 
based on Proxy and Universal Re-encryption which allows 
the back end server to get tag identifier only after a simple 
decryption that requires a constant time. This makes it one 
of the highest scalable authentication protocols. And it 
suffers problem of traceability, Denial-of-Service (DoS) 
attack and swapping. 

YA-TRAP [12] is a famous authentication protocol that 
places little burden on the back end server and uses 
monotonically increasing timestamp which makes it secure 
against tracking but unsecure against DoS attack. Here, tags 
update their timestamp based on a value provided by the 
reader. At the same time each tag stores ௠ܶ௔௫,which if 
reached, a tag does not answer to the reader’s queries. 
Hence an adversary can send to the tag a large enough 
timestamp so that it goes beyond ௠ܶ௔௫ which results in DoS 
attack.  Although the solution to this attack was proposed in 
[1], it still lacks forward secrecy. 

Another hash chain based RFID identification protocol is 
RIPP-FS [3]. Here Mauro et al. proposed that each tag 
shares a private symmetric key with the server. After each 
successful authentication tag and server both updates the 
symmetric key to maintain synchronization. One of the key 
features of RIPP-FS protocol is that the reader is free of 
“on-the-fly” computation while a tag reading is performed. 
It is also resilient to a specific DoS attack where the 
adversary attempts to exhaust the hash chain.  The main 
flaw of this protocol is the formation of an infinite hash 
chain. 

Another lightweight protocol is OSK [7]. Ohkubo, Suzuki 
and Kinoshita proposed that only two hash function ܪ and 
 is sufficient to provides indistinguishability and forward ܩ
secrecy, where ܪ is a one way hash function and ܩ has 
random oracle. According to this protocol a tag is 
initialized with a shared secret ݏ௜ and the back end server 
maintains a list of tags (݅݀,  ௜). Tag updates its secret keyݏ
after each query according to the following formula ݏ௜ାଵ ൌ
 ௜ሻ. And in response to the query from a reader, tagݏሺܪ
replies ܽ௜ ൌ  ௜ሻ. The server on the other hand uses thisݏሺܩ
ܽ௜ to identify the tag by performing a brute force search 
through the list of tags. OSK does not ensure high 
scalability. In [1], Avoine and Oechslin modified OSK 
which removed the scalability problem. Another problem 
of OSK is that a malicious reader may easily desynchronize 
a tag which results in DoS attack. 

In [11], Chiu et al. proposed a serverless authentication 
protocol. In this protocol reader maintains an access list ܮ௜ 
which is used for tag authentication purpose. And each tag 
has a secret ݐ which is not shared with anyone. Reader and 
tag both know ݂ሺݎ,  is reader identifier. Here in ݎ ሻ, whereݐ



  

response to the query from a reader, tag replies with some 
of the bits of ݄ሺ݂ሺݎ, ሻݐ צ  ݊௜ צ   ௝݊ሻሻ where ݊௜ and ௝݊ are 
two random numbers generated by the reader and the tag 
respectively and ݄ሺ. ሻ is a one way hash function. Since 
only a legitimate tag can generate ݄ሺ݂ሺݎ, ሻݐ צ  ݊௜ צ   ௝݊ሻሻ, it 
works as tag’s certificate to the reader. At the same time tag 
queries reader with a question string. Only a legitimate 
reader replies with valid answer string which introduces the 
reader as an authorized reader to the tag. Tag releases its 
data only after realizing that the reader is legitimate. But 
here again the reader has to do a lot of computation to find 
out  ݅݀ of the required tag. But their protocol 2 is not purely 
and strongly anonymous as they return tag ݅݀ by 
performing XOR operation with hash value for 
authentication. Moreover, they didn’t propose any 
technique for ownership transfer.   

3.  SECURITY REQUIREMENTS 
RFID technology may bring spontaneous risks because of 
the proliferation of RFID tags. Number of research 
literatures has dealt with several privacy and security issues 
of RFID. In section 2 we have also noticed that some of 
them do not guarantee firm security. So here we point out 
the security goals that should be guaranteed by a protocol: 

Forward secrecy: An adversary compromising a tag will 
not be able to identify the previous outputs of the tag. 
DoS resiliency: Denial-of-Service (DoS) attack means an 
authorized entity is prevented from accessing its authorized 
entities. In order to ensure successful communication 
between a reader and its authorized tags, it should be 
guaranteed that an adversary cannot desynchronize them. 
Synchronization: Attacker should not able to update the 
key used by the tag or the reader to secure the 
communication. 
Privacy protection: A tag cannot be distinguished by an 
adversary without tampering it and realizing all its stored 
information. 
Anti-tracking: It is tough for an adversary to track a tag if 
it does not have any information about the tag. But the 
adversary can track a tag, if the tag replies with a constant 
response each time it is queried. So protocols should be 
designed such that a tag neither reveals its ݅݀ nor replies 
with constant response. 

Anti-cloning: In order to clone a tag, an adversary needs to 
know the secret key shared by the tag with its authorized 
reader. So, to be secured against cloning attack, protocols 
should never reveal the shared secret key. 

Key secrecy: Unless the tag is tampered, an adversary 
cannot identify the secret key used by the reader or the tag 
in secure communication. 
Anonymity: Guaranteeing anonymity means an adversary 
will never be able to comprehend the ݅݀ of a tag by 

listening to the communication between the tag and the 
reader. 
Not susceptible to replay attack: Security must be ensured 
against replay attacks so that an adversary cannot 
impersonate a legitimate tag by replaying an eavesdropped 
message. 
Lightweight: Protocols should be lightweight, i.e. they 
should be free from heavyweight computation. 

4. AUTHENTICATION PROTOCOLS 
We present two slightly different authentication protocols. 
In both protocols the tag identifier is not passed on to the 
reader. But the tag sends certifying information to the 
reader in such a way that only the authorized reader is able 
to find out the identifier of the tag.   

4.1 Notation and Assumption 
We refer an RFID reader as ܴ. Each ܴ has a unique 
identifier ݎ and a contact list ࣦ . We will describe the 
contents of ࣦ later. ܴ obtains ݎ and ࣦ from a trusted 
center, ܶܥ, after authenticating itself. The ܶܥ is a trusted 
party who deploys all the RFID tags and authorizes any 
RFID reader. For the sake of simplicity we assume that ܴ 
and ܶܥ communicate through a secure channel. On the 
other hand, each RFID tag ܶ contains a unique identifier ݅݀ 
and a unique secret ݐ in its nonvolatile memory. 

Subscripts are used to describe a particular ܴ or ܶ and their 
respective variables. Thus a particular RFID reader ݅ will 
be ܴ௜ with an identifier ݎ௜ and contact list ࣦ௜ stored in its 
nonvolatile memory. An RFID tag ݆ is ௝ܶ having a secret ݐ௝. 
The contact list ࣦ௜ contains information about the tags 
which ܴ௜ has access to. And the information about each tag 
comprises a seed and the id of the tag. If ܴ௜ is authorized to 
access tags ଵܶ,൉ ൉ ൉, ௡ܶ,  ࣦ௜ will take the following shape 
after authenticating itself to ܶܥ, 

       ࣦ௜ ൌ ൝
:ଵ݀݁݁ݏ ݅݀ଵ
··· ׷      ···

:௡݀݁݁ݏ ݅݀௡

ൡ 

where, for any tag ௝ܶ and 1 ൑ ݆ ൑ ݁݁ݏ ,݊ ௝݀ is a seed used 
by ܴ௜ to communicate with ௝ܶ and ݅ ௝݀is ௝ܶ’s identifier. 
݁݁ݏ ௝݀ is initialized by ݁݁ݏ ௝݀ ൌ ݂൫ݎ௜, ௝൯ݐ ൌ ݄൫ݎ௜ צ  ௝൯ whereݐ
݄ሺ. ሻ is a one way hash function and צ represents 
concatenate. Note that ܴ௜ does not know the tag secret ݐ௝. 
ܴ௜ only knows the outcome of the function ݂൫ݎ௜,  ௝൯ asݐ
݁݁ݏ ௝݀. The initial ݁݁ݏ ௝݀ is computed by ܶܥ and stored in 
ܴ௜.  

On the contrary, the tag ௝ܶ will contain only one seed for its 
only one authorized reader ܴ௜. While deploying the tag ௝ܶ 
by ܶܥ, ௝ܶ will get ݂൫ݎ௜, ௝൯ݐ ൌ ݄൫ݎ௜ צ  .ܥܶ ೕ from்݀݁݁ݏ ௝൯ asݐ

௝ܶ stores ்݀݁݁ݏೕ in its nonvolatile memory. We also assume 
that the ܶܥ cannot be compromised. Moreover our 
assumptions also include that all the readers once 



  

authenticated by the ܶܥ are trusted. And we denote an 
adversary as ߷. 

All readers and tags have knowledge of a pseudorandom 
number generator ࣪ሺ. ሻ and a function ࣧሺ. ሻ. ࣪ሺ. ሻ takes a 
seed as an argument and outputs a pseudorandom number 
according to its distribution. ࣧሺ. ሻ is used by all readers 
and tags to update the seed of the pseudorandom number 
generator by passing the current seed as input. We assume 
ࣧሺ. ሻ as an irreversible one way hash function. Therefore a 
current seed cannot be linked to its previous one.  

4.2 Authentication Protocol 1 
(1) ܴ௜ ՜  ௝ܶ     :      ݐݏ݁ݑݍ݁ݎ   
(2) ௝ܶ ׷                    ௝݊ ൌ  ࣪ ቀ்݀݁݁ݏೕቁ  
(3) ܴ௜ ՚  ௝ܶ   ׷      ௝݊  
(4) ܴ௜ ׷                   ݊௜ ൌ   ݀݊ܽݎ
(5)          for all ݉ from 1 to ݊ 

    //run through list ࣦ௜ 
(6)   Let ݊௠ ൌ ࣪ሺ݀݁݁ݏ௠ሻ  
(7)   if ሺ ݊௠ ൌൌ  ௝݊ሻ then 
(8)    Let ݏ ൌ ࣧሺ݀݁݁ݏ௠ሻ 
(9)    ݊௜ ൌ  ࣪ሺݏሻ  
௠݀݁݁ݏ    (10) ൌ  ࣧሺݏሻ   
(11)         ܴ௜ ՜  ௝ܶ ׷  ݊௜ 
(12) ܶ ௝ ׷                    Let ݇ ൌ ࣧ ቀ்݀݁݁ݏೕቁ  
(13)         Let ܽ ൌ ࣪ሺ݇ሻ 
(14)         if ሺܽ ൌൌ ݊௜ሻ then 
ೕ்݀݁݁ݏ   (15) ൌ ࣧሺ݇ሻ  

4.2.1 Protocol Description  
At the beginning the reader ܴ௜ transmits a ݐݏ݁ݑݍ݁ݎ to the 
tag ௝ܶ. To authenticate itself to ܴ௜, ௝ܶ uses ்݀݁݁ݏೕ to 
generate  ௝݊ which is pseudorandom number. Now 

௝ܶ  transmits ௝݊ to the reader. Only a legitimate tag can 
accurately generate ௝݊. At the reader side, ݊௜ is initialized 
with a ݀݊ܽݎ number. For each tag ௠ܶ, ܴ௜ generates next 
pseudorandom number as well as compares each of the 
generated number with ௝݊ received from ௝ܶ. Note that ‘//’ 
denotes in inline comments. Each pseudorandom number is 
based on the corresponding ݀݁݁ݏ௠ of tag ௠ܶ which the 
reader obtains from its ࣦ௜. ܴ௜ authenticates ௝ܶ if there is a 
match with ௝݊. Only then the next pseudorandom number 
for that tag is computed after updating the corresponding 
seed. The updated seed is again updated and stored in the 
list ࣦ௜. Finally the reader ܴ௜ transmits ݊௜ to the tag ௝ܶ. If a 
match is found, then ݊௜ will be the produced next 
pseudorandom number. Otherwise, ݊௜ contains ݀݊ܽݎ. Now 

௝ܶ generates next pseudorandom number with the updated 
 ೕ and compares the number with  ݊௜ sent by ܴ௜. ௝்ܶ݀݁݁ݏ
authenticates ܴ௜ only if a match occurs. And this match 
causes ௝ܶ  to update the already updated seed again and 
store in ்݀݁݁ݏೕ.  In this way both parties have same seed 

after a successful authentication which guarantees 
synchronization. 

4.2.2 Problem of Protocol 1 
This protocol has some major security problems that are 
discussed below: 

Tracking: Here, ߷ tries to track ௝ܶ over time. ߷ succeeds if 
it is able to distinguish ௝ܶ from other RFID tags. ߷ usually 
performs this attack by repeatedly querying ௝ܶ. Those 
queries will yield consistent reply. This consistent reply 
becomes a signature of ௝ܶ. In protocol 1, if ߷ queries ௝ܶ 
contiguously for at least two times, ௝ܶ will reply with the 
same answer. We assume that no successful authentication 
is done in the mean time. As ௝ܶ   will use the same seed to 
produce pseudorandom number, the generated numbers 
will be same. Therefore ߷ will be able to track ௝ܶ. Thus 
protocol 1 is not protected against tracking.  

De-synchronization: Protocol 1 suffers from de-
synchronization problem which is caused by replay attack. 
An adversary ߷ is able to observe all the interaction 
between ܴ௜ and ௝ܶ. In other words, ߷ can eavesdrop any 
challenge-response. Now, by querying ௝ܶ, ߷ gets a reply 
with valid ௝݊. Next time whenever ܴ௜ tries to access ௝ܶ, ߷ 
impersonates ௝ܶ and replies with the learned valid ௝ܶ to 
attack ܴ௜. As ௝݊ is valid, ܴ௜ finds a match and updates the 
seed in its list. Whereas ௝ܶ is totally unaware of the 
authentication between ܴ௜ and ߷. Hence, the seeds become 
de-synchronized between ܴ௜ and ௝ܶ. As a result, ܴ௜ can 
never authenticate ௝ܶ in future transactions. 

4.3 Authentication protocol 2 
(1) ܴ௜ ՜  ௝ܶ     :       ݐݏ݁ݑݍ݁ݎ,   ௜݀݊ܽݎ

(2) ௝ܶ ׷                     ௝݊ ൌ ࣪ ൬்݀݁݁ݏೕ ْ ൫݀݊ܽݎ௜ צ

݊ܽݎ ௝݀ሻቁ  
(3) ܴ௜ ՚  ௝ܶ   ׷       ௝݊ , ݊ܽݎ ௝݀  
(4) ܴ௜ ׷                    ݊௜ ൌ   ݀݊ܽݎ
(5)           for all ݉ from 1 to ݊ 
    //run through list ࣦ௜  
(6)    Let ݊௠ ൌ ࣪ ቀ݀݁݁ݏ௠ ْ
                                                                      ൫݀݊ܽݎ௜ צ
݊ܽݎ ௝݀ሻቁ   
(7)    if ሺ ݊௠ ൌൌ  ௝݊ሻ then 
(8)     Let ݏ ൌ ࣧሺ݀݁݁ݏ௠ሻ 
(9)     ݊௜ ൌ  ࣪ሺݏሻ  
௠݀݁݁ݏ     (10) ൌ  ࣧሺݏሻ   
(11)            ܴ௜ ՜  ௝ܶ ׷  ݊௜ 
(12) ௝ܶ ׷                      Let ݇ ൌ ࣧ ቀ்݀݁݁ݏೕቁ  
(13)            Let ܽ ൌ ࣪ሺ݇ሻ 
(14)           if ሺܽ ൌൌ ݊௜ሻ then 
ೕ்݀݁݁ݏ    (15) ൌ ࣧሺ݇ሻ  



  

(16)           else 
  ݀݁ݖ݅ݎ݋݄ݐݑܽ ݐ݋݊ ݏ݅ ݎܴ݁݀ܽ݁    (17)
  ݕݎܽݏݎ݁ݒ݀ܽ ݊ܽ ݏ݅ ݎ݋                                                  

4.3.1 Protocol Description 
Protocol 2 is improved version of protocol 1. At the 
beginning, ܴ௜ transmits a ݐݏ݁ݑݍ݁ݎ and ݀݊ܽݎ௜ to Tag ௝ܶ. ௝ܶ 
generates ௝݊ by using ்݀݁݁ݏೕ, ݀݊ܽݎ௜ and a random number 
݊ܽݎ ௝݀ generated by itself. After receiving ݊௜ and ݊ܽݎ ௝݀, ܴ௜ 
computes ࣪ ቀ݀݁݁ݏ௠ ْ ൫݀݊ܽݎ௜ צ ݊ܽݎ ௝݀൯ቁ for each tag ௠ܶ 
in the list ࣦ௜, where 1 ൑ ݉ ൑ ݊. Here ‘//’ denotes inline 
comment. If ܴ௜ finds a match, it changes the value of ݊௜ 
from ݀݊ܽݎ to a pseudorandom number produced by ࣪ሺ. ሻ 
and updates the seed in ࣦ௜. Then ܴ௜ sends ݊௜ to ௝ܶ. If a 
match does not occur, ܴ௜ sends ݊௜ with the value ݀݊ܽݎ and 
concludes that it is a fake tag. Now, ௝ܶ generates the next 
pseudorandom number and compares it with ݊௜. If the two 
numbers are same, ௝ܶ updates its seed and concludes ܴ௜ as 
the authorized reader. But in case of a mismatch, ௝ܶ decides 
that the reader is not authorized to access it or the reader is 
indeed an adversary. Here a major improvement is to be 
noticed that both the reader and the tag update their seeds 
only when they are sure about the validity of the opposite 
party. 

4.3.2 Why Protocol 2? 
The privacy and security problems of protocol 1 exhibit the 
necessity of a new protocol that can protect reader or tag 
against those attacks. Besides overcoming the problems of 
protocol 1, protocol 2 is secure against other attacks that we 
will discuss elaborately in section 4.3.3. Here we just 
explain how protocol 2 is secure against the problems of 
protocol 1.  

Tracking: By incorporating a ݀݊ܽݎ௜ and ݊ܽݎ ௝݀, protocol 2 
is secured against tracking. By exploiting the power of 
eavesdrop-ing, an adversary ߷ can listen all the messages 
between ܴ௜ and ௝ܶ. ߷ fails to track ௝ܶ by replaying same 
 ௜ learned from any previous challenge-response݀݊ܽݎ
because ௝ܶ replies with different response, due to ݊ܽݎ ௝݀, 
each time it is queried.  

De-synchronization: In protocol 2 seeds are updated when 
both the reader and the tag are certain about their validity. 
After listening to all the messages between ܴ௜ and ௝ܶ, ߷ 
queries ௝ܶ with a ݀݊ܽݎ and ௝ܶ replies with a ௝݊. Whenever 
ܴ௜ again tries to access ௝ܶ, ߷ impersonates ௝ܶ by replying 
with the learned ௝݊. To make itself legitimate to ܴ௜, ߷ has to 
use either of the two particular values for ݀݊ܽݎ while 
communicating with ௝ܶ to collect ௝݊. One of them is correct 
next ݀݊ܽݎ௜ that ܴ௜ will generate in the transaction in which 
߷ tries to imitate ௝ܶ. And the other value is a previous 
 ௜ listened by ߷ before. Unfortunately, guessing of a݀݊ܽݎ
random number generated by one party is impossible for 
other party. On the other hand, by using previous ݀݊ܽݎ௜, ߷ 

fails since ܴ௜ will not use the same ݀݊ܽݎ௜ in future again. 
Therefore, ߷ attempts in vain to break the synchronization 
of seeds between a legitimate ܴ௜ and ௝ܶ. 

4.3.3 Security Analysis of Protocol 2 
Cloning: Here ߷ queries ௝ܶ several times and places its 
response in a fake tag. Let this fake tag be ఫܶ෡ . ߷ wants to 
counterfeit a legitimate tag and it becomes successful if it 
can fool a legitimate reader ܴ௜. Under our protocol 
whenever the adversary queries ௝ܶ  , it gets a different 
response because of ݀݊ܽݎ௜ and ݊ܽݎ ௝݀. Now if ߷ places this 
response in ఫܶ෡  it will never be able to fool an honest ܴ௜. 
When ఫܶ෡  is queried by honest ܴ௜, ఫܶ෡  will reply with a value 
that will not match with the one generated by original ௝ܶ  . 
This is because ܴ௜ will now have a different ݀݊ܽݎ௜. 
Moreover, ఫܶ෡  cannot generate the actual response as it does 
not know the current seed stored in the tag. Guessing the 
response will not help either as it has a very low 
probability. Next we consider the case when ߷ tries to clone 
a tag by eavesdropping between a tag and reader. 

Eavesdropping: Here ߷ eavesdrops the communication 
between ܴ௜ and ௝ܶ  and later uses these to create a fake 
reader ܴప෡  or a fake tag ఫܶ෡ . Under our protocol this attack is 
not possible because after a successful communication 
between ܴ௜ and ௝ܶ, both have changed their seeds. ߷ will 
learn  ݀݊ܽݎ௜ and ݊ܽݎ ௝݀ from the whole communication. 

But the response ࣪ ൬்݀݁݁ݏೕ ْ ൫݀݊ܽݎ௜ צ ݊ܽݎ ௝݀൯൰ of a tag 

requires random numbers generated by two parties. But ߷ 
impersonating ܴ௜ or ௝ܶ  cannot control random number 
generated by the other party. Even knowing correct ݀݊ܽݎ௜ 
and ݊ܽݎ ௝݀ is useless as ߷ needs correct seed to generate 
correct response.   

Suppose, ߷ impersonates tag ௝ܶ  which we name ఫܶ෡  and it 
wants to fool an honest reader ܴ௜ with which ௝ܶ  had 
communicated recently. Now ఫܶ෡  will not be able to fool 
ܴ௜ as ܴ௜ will definitely provide with a different ݀݊ܽݎప෫ . And 

ఫܶ෡  cannot generate ࣪ ൬்݀݁݁ݏೕ ْ ൫ ݀݊ܽݎప෫ צ ݊ܽݎ ௝݀൯൰ as it 

does not know the ்݀݁݁ݏೕ. Even if ఫܶ෡  replays ࣪ ൬்݀݁݁ݏೕ ْ

൫݀݊ܽݎ௜ צ ݊ܽݎ ௝݀൯ቁ, reader will easily identify that it is a 
fake tag. Therefore we can say that as every 
communication involves random number generated by two 
parties and current seed, ߷ cannot launch a replay attack 
using pervious values. 

Physical attack: Physical attack means ߷ can compromise 
either tag or reader. We will consider each case. We will 
also assume that once ߷ compromises ܴ௜ or ௝ܶ  it will learn 
everything about the tag or reader. 



  

A. ࣙ compromises ࢏ࡾ: When adversary compromises a 
reader ܴ௜ , adversary will know reader’s contact list ࣦ௜ and 
id ݎ௜. It can now impersonate ܴ௜ and communicate with ௝ܶ. 
߷ can counterfeit a tag ௝ܶ  residing in its contact list ࣦ௜, 
which we will name ఫܶ෡ . Adversary will be successful if  ఫܶ෡  
can fool another legitimate reader ܴ௫. But under our 
protocol ௝ܶis authorized to only ܴ௜. So, ఫܶ෡  cannot fool ܴ௫ by 
learning only ݁݁ݏ ௝݀.  

B. ࣙ compromises ࢐ࢀ: In this case, adversary compromises 
tag ௝ܶ  and learns  ்݀݁݁ݏೕ that it shares with reader ܴ௜. From 
this information ߷ will want to create a fake tag ௫ܶ which 
will communicate successfully with an honest reader ܴ௜, 
where ௫ܶ resides in contact list ࣦ௜. Each RFID tag shares a 
seed with its authorized reader. So ௫ܶ will share a different 
seed with ܴ௜ which is not known by ௝ܶ. So even if ߷ knows 
 ೕ, it cannot derive the seed shared between ܴ௜ and ௫்ܶ݀݁݁ݏ
and therefore ߷ cannot create a fake tag to fool ܴ௜.   

Denial of service (DoS): In this case, ߷ does not want to 
derive any information or tries to impersonate. Its main 
target is to ensure that a reader cannot access its authorized 
tags. This is a severe problem where back end database 
shares a secret key with tags. And the key has to be 
synchronized for successful communication. Our protocol 
eliminates need of a back end server. So synchronization 
between server and tag is not obligatory. Moreover in our 
protocol both tag and reader updates their shared seed only 
after becoming certain of the other end’s validity. Under 
our protocol an adversary can never proof himself as 
legitimate and thus he can never desynchronize tag or 
reader.  

Privacy protection: People carrying various tagged item do 
not want to hamper their privacy. It means that tagged 
object should reveal their ID to none but authorized reader, 
otherwise malicious readers may cause several 
vulnerabilities to owner’s day to day life. Our protocol 
protects user’s privacy strongly. Since under our protocol a 
tag never send it’s ݅݀ to anyone, not even reader. It sends 
its reply in disguise so that only an authorized reader can 
identify a tag.   

Anonymity: The problem of leaking information about user 
possessions occurs if anonymity is not ensured. To ensure 
݅݀ anonymity, a tag should never output it’s ݅݀ directly nor 
should reply with constant data. Our protocol is totally 
anonymous in a sense that a tag never replies with its ݅݀, 
not even by encrypting it for security. Rather a tag replies 
in a special format so that only an authorized reader is able 
to find out tag’s ݅݀ from its contact list ࣦ௜.  

Key secrecy: Our protocol ensures key secrecy as both tag 
and reader uses a shared seed to secure the communication. 
This seed is updated in both sides only after successful 
authentication using a one way hash function. So an 

adversary ߷ can never recover seed listening to the 
communication between a tag and reader. 

Forward secrecy: Forward secrecy means if anyhow an 
adversary compromises a tag, it will not reveal any data 
previously transmitted by that tag. It means that if ߷ 
physically tampers ௝ܶ  and learns ்݀݁݁ݏೕshared with ܴ௜, ߷ 
will not be able to trace the data back through past events in 
which they were involved. Our protocol ensures strong 
forward secrecy as seed update function ࣧሺ. ሻ is an 
irreversible one way hash function. So ߷ tampering 

௝ܶ  cannot know former outputs based on former seed as it 
cannot derive previous seed from the current seed . 

Lightweight: Our authentication protocol is lightweight and 
low cost in a sense that they require only random number 
generator, concatenation and hash function generation 
capability. 

4.4 Additional Features 
Ownership transfer: Ownership transfer ensures that an 
authorized reader renounces the authority of a tag and a 
new reader gets the authority to access the tag. In other 
words, a tagged object will continue to be authenticated by 
only a new authorized reader. However the old authorized 
reader is no more accredited to access it. Suppose ܴ௜ is the 
current owner of tag ௝ܶ. After transferring ownership to 
another reader ܴ௫, ௝ܶ responds to ܴ௫ in the same way as it 
did to ܴ௜. From now on ܴ௜ has no rights to access ௝ܶ. 
Ownership transfer is a prominent property that facilitates 
many RFID applications. As far as we know ownership 
transfer issue is dealt with only in [6] and [9]. In both of 
them back end server played a significant role. To the best 
of our knowledge, we are proposing ownership transfer in 
serverless system for the first time. Based on our protocol, 
two methods of ownership transfer are proposed next. 

A. ࡯ࢀ based ownership transfer: ܶܥ (Trusted Center) has 
all the responsibility regarding every type of management. 
A reader gets its contact list ࣦ from ܶܥ using a secure 
channel at the beginning of its operation. Whenever a 
reader faces the need to transfer the ownership of a 
particular tag to other reader, it informs the ܶܥ about the 
change in access policy and ownership information of that 
tag. Ownership information comprises the identifier and the 
corresponding seed for the particular tag stored in the 
reader’s list. ܶܥ will now authenticate new owner (other 
reader) and authorize it by updating the contact list of new 
owner with ownership information. On the other hand, ܶܥ 
will also delete the ownership information of that tag from 
the old owner's contact list. For example, ݅ ௝݀ and current 
݁݁ݏ ௝݀ for tag ௝ܶ will suffice as ownership information. Old 
owner transmits this ownership information to ܶܥ at the 
time of informing about a change in ownership of ௝ܶ. 

B. Serverless ownership transfer: Previous method is not a 
feasible solution of transferring ownership as it requires 



  

intervention of ܶܥ for every ownership transfer. So we 
remove the necessity of ܶܥ in transferring ownership by 
introducing serverless ownership transfer. The salient 
feature of this method is “reader - reader secure 
communication”. At the time of ownership transfer, old 
owner transmits ݅ ௝݀ and current ݁݁ݏ ௝݀ for the particular tag 

௝ܶ to new owner and then simply eradicates owner-ship 
information for that tag from the non-volatile memory of 
the old owner. Therefore old owner has no valid seed to 
access ௝ܶ while the seed for the new owner and tag ௝ܶ still 
remain synchronized.  

Scalability: Scalability means that a reader can find a tag’s 
identifier with constant computational time regardless of 
the number of tags that is owned by it. So one solution of 
ensuring scalability can be - each reader will own moderate 
number of tags which will make the search scalable. If the 
number of tags in a reader is ݌, the time complexity of 
search operation will be ܱሺ݌ሻ, where to make the search 
scalable ݌ needs to be small enough. 

But Juels and Weis proved in [5] that improved randomized 
hash lock offer strong privacy and security at the cost of 
poor scalability. In fact the authors in [5] proposed that in 
case of protocols that protect privacy using symmetric key 
cryptography, reader or server has to perform exhaustive 
search to find out a tag’s identity. They also advocated the 
protocols that are more rational but weaker in privacy 
protection. Hence we entirely comply with their 
observation and propose a more practical way of ensuring 
scalability with the help of ownership transfer. 

Our proposal is that each reader will have a threshold ߠ. 
Here ߠ is the maximum number of tags’ ownership 
information that can reside in a reader to ensure scalability. 
When a reader's contact list surpasses threshold ߠ, the 
reader called as overloaded reader wishes to reduce its 
burden. So if the overloaded reader has a co-operative 
reader (not an adversary) within its radio range and if the 
co-operative reader has enough memory to accommodate 
the overloaded reader's load, the overloaded reader will 
transfer some of its burden to the other one. Therefore by 
only transferring ownership to a co-operative reader, an 
overloaded reader's contact list may again become scalable. 

5. ILLUSTRATIVE EXAMPLE 
The major strength of a server less protocol is support for 
mobile and outdoor applications where the existences of a 
dedicated server or a communication channel are often 
impractical. In this section, we present four such 
application scenarios and contemplate the effectiveness of 
our proposed protocol. 

a) Container recognition in off-site location: Let us 
consider a case in which a company uses RFID system for 
employee identification, human authentication while 
entering into safety regions, document management, 
product maintenance and etc. All these services are easily 

ensured with central server based RFID system. But this 
company faces problem when they have to collect their 
ordered raw material containers from other companies that 
belong to the off-site locations. This off site location has no 
connection with the central server. Normally truck drivers 
are dispatched to the other companies to collect container 
deliveries. But it is a very usual case that people employed 
in this job does not have the capability to ensure that the 
supplied containers are the correct one that were ordered by 
his company. Moreover it is not possible to check each 
container individually because obviously there are 
enormous numbers of containers. As a result, containers 
being unchecked, sometimes wrong material are delivered 
to the warehouse. This causes a loss for the particular 
manufacturing company. Now this problem can be easily 
eliminated by using our serverless protocol provided that 
the containers are tagged objects. The truck driver may 
have with him his personal PDA, which can act as a reader. 
Reaching the offsite location this reader can easily 
authenticate the containers and find out whether they are 
the ordered containers or not. This can be easily done as 
under our protocol, readers can authenticate and 
communicate with tags without the intervention of central 
server.  

b) School children tracking while away from school: 
School children are often taken at various education tours 
in different places. Tracking children is already possible 
with the existing server based RFID systems. But tracking 
children in picnic spots or places where children are taken 
on education tours is difficult because of the unavailability 
of the central database. But our protocol can perform here 
successfully as it can authenticate and identify any children 
without the help of central database. Tags are attached to 
the identity card of the children and the PDAs of the 
teachers can act as a reader. Then by using our protocol 
teachers can easily track and identify children or even find 
missing children. 

c) Environmental monitoring: The use of RFID systems in 
conjunction with highly miniaturized sensors will make it 
possible to observe diverse environmental phenomena. 
Environmental scientists perform diverse research on 
environment by attaching tags with animals and releasing 
them in the wild again. These attached tags together with 
our serverless protocol can help scientists on their research.  
Moreover, sometimes it becomes necessary to regain a 
tagged animal from the wild for research purpose. In this 
case our protocol can be very useful as readers can track or 
locate the tagged animal in the wild without the need of 
server. 

d) Authenticating smart objects usage at construction site: 
Several research groups have been investigating 
applications of smart objects in outdoor working sites 
where regular tools are augmented for supplementary 
services. For example: in [14], construction drill machines 



  

are augmented so that usage history can be monitored and 
usage safety can be ensured by appropriate alerts.  Such 
augmentations have direct implications in the business and 
logistic processes of the companies since they use 
performance record of the workers. Our proposed protocol 
can be applied to such scenarios to authenticate the workers 
to use the smart tools and to enable secure logging of 
monitoring data locally which ensures their privacy 

6. CONCLUSION 
One of the major challenges for RFID technology is to 
provide benefits without negotiating privacy and security. 
Many solutions have been recommended but almost as 
many ways have been found to crack them. While there are 
several existing methods, none of them provide a complete 
solution. In this paper we suggested serverless 
authentication protocols which ensure that both tag and 
reader are authenticated at the time of communication. Our 
authentication protocol is lightweight, forward secured and 
shielded against some major attacks like: tracking, cloning, 
eavesdropping, physical tampering, and DoS attack. 
Moreover we also suggested ownership transfer mechanism 
which facilitates our protocol to be scalable. To the best of 
our knowledge, this is the first contribution in the literature 
that enables serverless protocols to perform ownership 
transfer. We also discussed application of our proposed 
serverless protocol in some real life examples. The 
application of our protocol is not limited to these examples 
only, but it can also be applied to some other real life 
circumstances. 

One future avenue of our work is applying the proposed 
protocol in real life applications. In section 5, we have 
provided several outdoor application scenarios where RFID 
in conjunction with other smart objects are contemplated 
for effective service provisions. Our proposed 
authentication protocol can seamlessly integrate into these 
services to make them more secure and protected. We are 
currently working on applying our protocol in multiple 
application scenarios and hope to present some exciting 
results in near future. 
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